This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation distributes over GCD. nn0gcdsq extended to nonnegative exponents. expgcd extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0expgcd | |- ( ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
|
| 2 | elnn0 | |- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
|
| 3 | expgcd | |- ( ( A e. NN /\ B e. NN /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
|
| 4 | 3 | 3expia | |- ( ( A e. NN /\ B e. NN ) -> ( N e. NN0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 5 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 6 | 0exp | |- ( N e. NN -> ( 0 ^ N ) = 0 ) |
|
| 7 | 6 | 3ad2ant3 | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( 0 ^ N ) = 0 ) |
| 8 | 7 | oveq1d | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( ( 0 ^ N ) gcd ( B ^ N ) ) = ( 0 gcd ( B ^ N ) ) ) |
| 9 | simp2 | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> B e. NN ) |
|
| 10 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 11 | 10 | 3ad2ant3 | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> N e. NN0 ) |
| 12 | 9 11 | nnexpcld | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. NN ) |
| 13 | 12 | nnzd | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. ZZ ) |
| 14 | gcd0id | |- ( ( B ^ N ) e. ZZ -> ( 0 gcd ( B ^ N ) ) = ( abs ` ( B ^ N ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( 0 gcd ( B ^ N ) ) = ( abs ` ( B ^ N ) ) ) |
| 16 | 12 | nnred | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. RR ) |
| 17 | 0red | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> 0 e. RR ) |
|
| 18 | 12 | nngt0d | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> 0 < ( B ^ N ) ) |
| 19 | 17 16 18 | ltled | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> 0 <_ ( B ^ N ) ) |
| 20 | 16 19 | absidd | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( abs ` ( B ^ N ) ) = ( B ^ N ) ) |
| 21 | 8 15 20 | 3eqtrrd | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( B ^ N ) = ( ( 0 ^ N ) gcd ( B ^ N ) ) ) |
| 22 | oveq1 | |- ( A = 0 -> ( A gcd B ) = ( 0 gcd B ) ) |
|
| 23 | 22 | 3ad2ant1 | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( A gcd B ) = ( 0 gcd B ) ) |
| 24 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 25 | 24 | 3ad2ant2 | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> B e. ZZ ) |
| 26 | gcd0id | |- ( B e. ZZ -> ( 0 gcd B ) = ( abs ` B ) ) |
|
| 27 | 25 26 | syl | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( 0 gcd B ) = ( abs ` B ) ) |
| 28 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 29 | 0red | |- ( B e. NN -> 0 e. RR ) |
|
| 30 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 31 | 29 28 30 | ltled | |- ( B e. NN -> 0 <_ B ) |
| 32 | 28 31 | absidd | |- ( B e. NN -> ( abs ` B ) = B ) |
| 33 | 32 | 3ad2ant2 | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( abs ` B ) = B ) |
| 34 | 23 27 33 | 3eqtrd | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( A gcd B ) = B ) |
| 35 | 34 | oveq1d | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) ^ N ) = ( B ^ N ) ) |
| 36 | oveq1 | |- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
|
| 37 | 36 | 3ad2ant1 | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( A ^ N ) = ( 0 ^ N ) ) |
| 38 | 37 | oveq1d | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( ( 0 ^ N ) gcd ( B ^ N ) ) ) |
| 39 | 21 35 38 | 3eqtr4d | |- ( ( A = 0 /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 40 | 39 | 3expia | |- ( ( A = 0 /\ B e. NN ) -> ( N e. NN -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 41 | 1z | |- 1 e. ZZ |
|
| 42 | gcd1 | |- ( 1 e. ZZ -> ( 1 gcd 1 ) = 1 ) |
|
| 43 | 41 42 | ax-mp | |- ( 1 gcd 1 ) = 1 |
| 44 | 43 | eqcomi | |- 1 = ( 1 gcd 1 ) |
| 45 | simp1 | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> A = 0 ) |
|
| 46 | 45 | oveq1d | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( A gcd B ) = ( 0 gcd B ) ) |
| 47 | simp2 | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> B e. NN ) |
|
| 48 | 47 | nnzd | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> B e. ZZ ) |
| 49 | 48 26 | syl | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( 0 gcd B ) = ( abs ` B ) ) |
| 50 | 32 | 3ad2ant2 | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( abs ` B ) = B ) |
| 51 | 46 49 50 | 3eqtrd | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( A gcd B ) = B ) |
| 52 | simp3 | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> N = 0 ) |
|
| 53 | 51 52 | oveq12d | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( B ^ 0 ) ) |
| 54 | 47 | nncnd | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> B e. CC ) |
| 55 | 54 | exp0d | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( B ^ 0 ) = 1 ) |
| 56 | 53 55 | eqtrd | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( ( A gcd B ) ^ N ) = 1 ) |
| 57 | 45 52 | oveq12d | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( A ^ N ) = ( 0 ^ 0 ) ) |
| 58 | 0exp0e1 | |- ( 0 ^ 0 ) = 1 |
|
| 59 | 58 | a1i | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( 0 ^ 0 ) = 1 ) |
| 60 | 57 59 | eqtrd | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( A ^ N ) = 1 ) |
| 61 | 52 | oveq2d | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( B ^ N ) = ( B ^ 0 ) ) |
| 62 | 61 55 | eqtrd | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( B ^ N ) = 1 ) |
| 63 | 60 62 | oveq12d | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( 1 gcd 1 ) ) |
| 64 | 44 56 63 | 3eqtr4a | |- ( ( A = 0 /\ B e. NN /\ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 65 | 64 | 3expia | |- ( ( A = 0 /\ B e. NN ) -> ( N = 0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 66 | 40 65 | jaod | |- ( ( A = 0 /\ B e. NN ) -> ( ( N e. NN \/ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 67 | 5 66 | biimtrid | |- ( ( A = 0 /\ B e. NN ) -> ( N e. NN0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 68 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 69 | 68 | 3ad2ant1 | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> A e. NN0 ) |
| 70 | 10 | 3ad2ant3 | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> N e. NN0 ) |
| 71 | 69 70 | nn0expcld | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( A ^ N ) e. NN0 ) |
| 72 | nn0gcdid0 | |- ( ( A ^ N ) e. NN0 -> ( ( A ^ N ) gcd 0 ) = ( A ^ N ) ) |
|
| 73 | 71 72 | syl | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( ( A ^ N ) gcd 0 ) = ( A ^ N ) ) |
| 74 | simp2 | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> B = 0 ) |
|
| 75 | 74 | oveq1d | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( B ^ N ) = ( 0 ^ N ) ) |
| 76 | 6 | 3ad2ant3 | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( 0 ^ N ) = 0 ) |
| 77 | 75 76 | eqtrd | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( B ^ N ) = 0 ) |
| 78 | 77 | oveq2d | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( ( A ^ N ) gcd 0 ) ) |
| 79 | 74 | oveq2d | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( A gcd B ) = ( A gcd 0 ) ) |
| 80 | nn0gcdid0 | |- ( A e. NN0 -> ( A gcd 0 ) = A ) |
|
| 81 | 68 80 | syl | |- ( A e. NN -> ( A gcd 0 ) = A ) |
| 82 | 81 | 3ad2ant1 | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( A gcd 0 ) = A ) |
| 83 | 79 82 | eqtrd | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( A gcd B ) = A ) |
| 84 | 83 | oveq1d | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( ( A gcd B ) ^ N ) = ( A ^ N ) ) |
| 85 | 73 78 84 | 3eqtr4rd | |- ( ( A e. NN /\ B = 0 /\ N e. NN ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 86 | 85 | 3expia | |- ( ( A e. NN /\ B = 0 ) -> ( N e. NN -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 87 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 88 | 87 | exp0d | |- ( A e. NN -> ( A ^ 0 ) = 1 ) |
| 89 | 88 43 | eqtr4di | |- ( A e. NN -> ( A ^ 0 ) = ( 1 gcd 1 ) ) |
| 90 | 81 | oveq1d | |- ( A e. NN -> ( ( A gcd 0 ) ^ 0 ) = ( A ^ 0 ) ) |
| 91 | 58 | a1i | |- ( A e. NN -> ( 0 ^ 0 ) = 1 ) |
| 92 | 88 91 | oveq12d | |- ( A e. NN -> ( ( A ^ 0 ) gcd ( 0 ^ 0 ) ) = ( 1 gcd 1 ) ) |
| 93 | 89 90 92 | 3eqtr4d | |- ( A e. NN -> ( ( A gcd 0 ) ^ 0 ) = ( ( A ^ 0 ) gcd ( 0 ^ 0 ) ) ) |
| 94 | 93 | 3ad2ant1 | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> ( ( A gcd 0 ) ^ 0 ) = ( ( A ^ 0 ) gcd ( 0 ^ 0 ) ) ) |
| 95 | simp2 | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> B = 0 ) |
|
| 96 | 95 | oveq2d | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> ( A gcd B ) = ( A gcd 0 ) ) |
| 97 | simp3 | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> N = 0 ) |
|
| 98 | 96 97 | oveq12d | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( ( A gcd 0 ) ^ 0 ) ) |
| 99 | 97 | oveq2d | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> ( A ^ N ) = ( A ^ 0 ) ) |
| 100 | 95 97 | oveq12d | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> ( B ^ N ) = ( 0 ^ 0 ) ) |
| 101 | 99 100 | oveq12d | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( ( A ^ 0 ) gcd ( 0 ^ 0 ) ) ) |
| 102 | 94 98 101 | 3eqtr4d | |- ( ( A e. NN /\ B = 0 /\ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 103 | 102 | 3expia | |- ( ( A e. NN /\ B = 0 ) -> ( N = 0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 104 | 86 103 | jaod | |- ( ( A e. NN /\ B = 0 ) -> ( ( N e. NN \/ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 105 | 5 104 | biimtrid | |- ( ( A e. NN /\ B = 0 ) -> ( N e. NN0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 106 | gcd0val | |- ( 0 gcd 0 ) = 0 |
|
| 107 | 6 106 | eqtr4di | |- ( N e. NN -> ( 0 ^ N ) = ( 0 gcd 0 ) ) |
| 108 | 106 | a1i | |- ( N e. NN -> ( 0 gcd 0 ) = 0 ) |
| 109 | 108 | oveq1d | |- ( N e. NN -> ( ( 0 gcd 0 ) ^ N ) = ( 0 ^ N ) ) |
| 110 | 6 6 | oveq12d | |- ( N e. NN -> ( ( 0 ^ N ) gcd ( 0 ^ N ) ) = ( 0 gcd 0 ) ) |
| 111 | 107 109 110 | 3eqtr4d | |- ( N e. NN -> ( ( 0 gcd 0 ) ^ N ) = ( ( 0 ^ N ) gcd ( 0 ^ N ) ) ) |
| 112 | 111 | 3ad2ant3 | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> ( ( 0 gcd 0 ) ^ N ) = ( ( 0 ^ N ) gcd ( 0 ^ N ) ) ) |
| 113 | simp1 | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> A = 0 ) |
|
| 114 | simp2 | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> B = 0 ) |
|
| 115 | 113 114 | oveq12d | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
| 116 | 115 | oveq1d | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> ( ( A gcd B ) ^ N ) = ( ( 0 gcd 0 ) ^ N ) ) |
| 117 | 113 | oveq1d | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> ( A ^ N ) = ( 0 ^ N ) ) |
| 118 | 114 | oveq1d | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> ( B ^ N ) = ( 0 ^ N ) ) |
| 119 | 117 118 | oveq12d | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( ( 0 ^ N ) gcd ( 0 ^ N ) ) ) |
| 120 | 112 116 119 | 3eqtr4d | |- ( ( A = 0 /\ B = 0 /\ N e. NN ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 121 | 120 | 3expia | |- ( ( A = 0 /\ B = 0 ) -> ( N e. NN -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 122 | 58 43 | eqtr4i | |- ( 0 ^ 0 ) = ( 1 gcd 1 ) |
| 123 | 106 | oveq1i | |- ( ( 0 gcd 0 ) ^ 0 ) = ( 0 ^ 0 ) |
| 124 | 58 58 | oveq12i | |- ( ( 0 ^ 0 ) gcd ( 0 ^ 0 ) ) = ( 1 gcd 1 ) |
| 125 | 122 123 124 | 3eqtr4i | |- ( ( 0 gcd 0 ) ^ 0 ) = ( ( 0 ^ 0 ) gcd ( 0 ^ 0 ) ) |
| 126 | simp1 | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> A = 0 ) |
|
| 127 | simp2 | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> B = 0 ) |
|
| 128 | 126 127 | oveq12d | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
| 129 | simp3 | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> N = 0 ) |
|
| 130 | 128 129 | oveq12d | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( ( 0 gcd 0 ) ^ 0 ) ) |
| 131 | 126 129 | oveq12d | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> ( A ^ N ) = ( 0 ^ 0 ) ) |
| 132 | 127 129 | oveq12d | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> ( B ^ N ) = ( 0 ^ 0 ) ) |
| 133 | 131 132 | oveq12d | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> ( ( A ^ N ) gcd ( B ^ N ) ) = ( ( 0 ^ 0 ) gcd ( 0 ^ 0 ) ) ) |
| 134 | 125 130 133 | 3eqtr4a | |- ( ( A = 0 /\ B = 0 /\ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 135 | 134 | 3expia | |- ( ( A = 0 /\ B = 0 ) -> ( N = 0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 136 | 121 135 | jaod | |- ( ( A = 0 /\ B = 0 ) -> ( ( N e. NN \/ N = 0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 137 | 5 136 | biimtrid | |- ( ( A = 0 /\ B = 0 ) -> ( N e. NN0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 138 | 4 67 105 137 | ccase | |- ( ( ( A e. NN \/ A = 0 ) /\ ( B e. NN \/ B = 0 ) ) -> ( N e. NN0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 139 | 1 2 138 | syl2anb | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( N e. NN0 -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) ) |
| 140 | 139 | 3impia | |- ( ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |