This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0gcdsq | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
|
| 2 | elnn0 | |- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
|
| 3 | sqgcd | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
|
| 4 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 5 | abssq | |- ( B e. CC -> ( ( abs ` B ) ^ 2 ) = ( abs ` ( B ^ 2 ) ) ) |
|
| 6 | 4 5 | syl | |- ( B e. NN -> ( ( abs ` B ) ^ 2 ) = ( abs ` ( B ^ 2 ) ) ) |
| 7 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 8 | gcd0id | |- ( B e. ZZ -> ( 0 gcd B ) = ( abs ` B ) ) |
|
| 9 | 7 8 | syl | |- ( B e. NN -> ( 0 gcd B ) = ( abs ` B ) ) |
| 10 | 9 | oveq1d | |- ( B e. NN -> ( ( 0 gcd B ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) ) |
| 11 | sq0 | |- ( 0 ^ 2 ) = 0 |
|
| 12 | 11 | a1i | |- ( B e. NN -> ( 0 ^ 2 ) = 0 ) |
| 13 | 12 | oveq1d | |- ( B e. NN -> ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) = ( 0 gcd ( B ^ 2 ) ) ) |
| 14 | zsqcl | |- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
|
| 15 | gcd0id | |- ( ( B ^ 2 ) e. ZZ -> ( 0 gcd ( B ^ 2 ) ) = ( abs ` ( B ^ 2 ) ) ) |
|
| 16 | 7 14 15 | 3syl | |- ( B e. NN -> ( 0 gcd ( B ^ 2 ) ) = ( abs ` ( B ^ 2 ) ) ) |
| 17 | 13 16 | eqtrd | |- ( B e. NN -> ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) = ( abs ` ( B ^ 2 ) ) ) |
| 18 | 6 10 17 | 3eqtr4d | |- ( B e. NN -> ( ( 0 gcd B ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 19 | 18 | adantl | |- ( ( A = 0 /\ B e. NN ) -> ( ( 0 gcd B ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 20 | oveq1 | |- ( A = 0 -> ( A gcd B ) = ( 0 gcd B ) ) |
|
| 21 | 20 | oveq1d | |- ( A = 0 -> ( ( A gcd B ) ^ 2 ) = ( ( 0 gcd B ) ^ 2 ) ) |
| 22 | oveq1 | |- ( A = 0 -> ( A ^ 2 ) = ( 0 ^ 2 ) ) |
|
| 23 | 22 | oveq1d | |- ( A = 0 -> ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 24 | 21 23 | eqeq12d | |- ( A = 0 -> ( ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) <-> ( ( 0 gcd B ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) ) |
| 25 | 24 | adantr | |- ( ( A = 0 /\ B e. NN ) -> ( ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) <-> ( ( 0 gcd B ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) ) |
| 26 | 19 25 | mpbird | |- ( ( A = 0 /\ B e. NN ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 27 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 28 | abssq | |- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( abs ` ( A ^ 2 ) ) ) |
|
| 29 | 27 28 | syl | |- ( A e. NN -> ( ( abs ` A ) ^ 2 ) = ( abs ` ( A ^ 2 ) ) ) |
| 30 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 31 | gcdid0 | |- ( A e. ZZ -> ( A gcd 0 ) = ( abs ` A ) ) |
|
| 32 | 30 31 | syl | |- ( A e. NN -> ( A gcd 0 ) = ( abs ` A ) ) |
| 33 | 32 | oveq1d | |- ( A e. NN -> ( ( A gcd 0 ) ^ 2 ) = ( ( abs ` A ) ^ 2 ) ) |
| 34 | 11 | a1i | |- ( A e. NN -> ( 0 ^ 2 ) = 0 ) |
| 35 | 34 | oveq2d | |- ( A e. NN -> ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) = ( ( A ^ 2 ) gcd 0 ) ) |
| 36 | zsqcl | |- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
|
| 37 | gcdid0 | |- ( ( A ^ 2 ) e. ZZ -> ( ( A ^ 2 ) gcd 0 ) = ( abs ` ( A ^ 2 ) ) ) |
|
| 38 | 30 36 37 | 3syl | |- ( A e. NN -> ( ( A ^ 2 ) gcd 0 ) = ( abs ` ( A ^ 2 ) ) ) |
| 39 | 35 38 | eqtrd | |- ( A e. NN -> ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) = ( abs ` ( A ^ 2 ) ) ) |
| 40 | 29 33 39 | 3eqtr4d | |- ( A e. NN -> ( ( A gcd 0 ) ^ 2 ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) |
| 41 | 40 | adantr | |- ( ( A e. NN /\ B = 0 ) -> ( ( A gcd 0 ) ^ 2 ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) |
| 42 | oveq2 | |- ( B = 0 -> ( A gcd B ) = ( A gcd 0 ) ) |
|
| 43 | 42 | oveq1d | |- ( B = 0 -> ( ( A gcd B ) ^ 2 ) = ( ( A gcd 0 ) ^ 2 ) ) |
| 44 | oveq1 | |- ( B = 0 -> ( B ^ 2 ) = ( 0 ^ 2 ) ) |
|
| 45 | 44 | oveq2d | |- ( B = 0 -> ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) |
| 46 | 43 45 | eqeq12d | |- ( B = 0 -> ( ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) <-> ( ( A gcd 0 ) ^ 2 ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) ) |
| 47 | 46 | adantl | |- ( ( A e. NN /\ B = 0 ) -> ( ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) <-> ( ( A gcd 0 ) ^ 2 ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) ) |
| 48 | 41 47 | mpbird | |- ( ( A e. NN /\ B = 0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 49 | gcd0val | |- ( 0 gcd 0 ) = 0 |
|
| 50 | 49 | oveq1i | |- ( ( 0 gcd 0 ) ^ 2 ) = ( 0 ^ 2 ) |
| 51 | 11 11 | oveq12i | |- ( ( 0 ^ 2 ) gcd ( 0 ^ 2 ) ) = ( 0 gcd 0 ) |
| 52 | 51 49 | eqtri | |- ( ( 0 ^ 2 ) gcd ( 0 ^ 2 ) ) = 0 |
| 53 | 11 50 52 | 3eqtr4i | |- ( ( 0 gcd 0 ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( 0 ^ 2 ) ) |
| 54 | oveq12 | |- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
|
| 55 | 54 | oveq1d | |- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( 0 gcd 0 ) ^ 2 ) ) |
| 56 | 22 44 | oveqan12d | |- ( ( A = 0 /\ B = 0 ) -> ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = ( ( 0 ^ 2 ) gcd ( 0 ^ 2 ) ) ) |
| 57 | 53 55 56 | 3eqtr4a | |- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 58 | 3 26 48 57 | ccase | |- ( ( ( A e. NN \/ A = 0 ) /\ ( B e. NN \/ B = 0 ) ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 59 | 1 2 58 | syl2anb | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |