This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of a number with 1 is 1. Theorem 1.4(d)1 in ApostolNT p. 16. (Contributed by Mario Carneiro, 19-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcd1 | |- ( M e. ZZ -> ( M gcd 1 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | gcddvds | |- ( ( M e. ZZ /\ 1 e. ZZ ) -> ( ( M gcd 1 ) || M /\ ( M gcd 1 ) || 1 ) ) |
|
| 3 | 1 2 | mpan2 | |- ( M e. ZZ -> ( ( M gcd 1 ) || M /\ ( M gcd 1 ) || 1 ) ) |
| 4 | 3 | simprd | |- ( M e. ZZ -> ( M gcd 1 ) || 1 ) |
| 5 | ax-1ne0 | |- 1 =/= 0 |
|
| 6 | simpr | |- ( ( M = 0 /\ 1 = 0 ) -> 1 = 0 ) |
|
| 7 | 6 | necon3ai | |- ( 1 =/= 0 -> -. ( M = 0 /\ 1 = 0 ) ) |
| 8 | 5 7 | ax-mp | |- -. ( M = 0 /\ 1 = 0 ) |
| 9 | gcdn0cl | |- ( ( ( M e. ZZ /\ 1 e. ZZ ) /\ -. ( M = 0 /\ 1 = 0 ) ) -> ( M gcd 1 ) e. NN ) |
|
| 10 | 8 9 | mpan2 | |- ( ( M e. ZZ /\ 1 e. ZZ ) -> ( M gcd 1 ) e. NN ) |
| 11 | 1 10 | mpan2 | |- ( M e. ZZ -> ( M gcd 1 ) e. NN ) |
| 12 | 11 | nnzd | |- ( M e. ZZ -> ( M gcd 1 ) e. ZZ ) |
| 13 | 1nn | |- 1 e. NN |
|
| 14 | dvdsle | |- ( ( ( M gcd 1 ) e. ZZ /\ 1 e. NN ) -> ( ( M gcd 1 ) || 1 -> ( M gcd 1 ) <_ 1 ) ) |
|
| 15 | 12 13 14 | sylancl | |- ( M e. ZZ -> ( ( M gcd 1 ) || 1 -> ( M gcd 1 ) <_ 1 ) ) |
| 16 | 4 15 | mpd | |- ( M e. ZZ -> ( M gcd 1 ) <_ 1 ) |
| 17 | nnle1eq1 | |- ( ( M gcd 1 ) e. NN -> ( ( M gcd 1 ) <_ 1 <-> ( M gcd 1 ) = 1 ) ) |
|
| 18 | 11 17 | syl | |- ( M e. ZZ -> ( ( M gcd 1 ) <_ 1 <-> ( M gcd 1 ) = 1 ) ) |
| 19 | 16 18 | mpbid | |- ( M e. ZZ -> ( M gcd 1 ) = 1 ) |