This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi , the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmopneg.1 | |- T : ~H --> ~H |
|
| Assertion | nmopnegi | |- ( normop ` ( -u 1 .op T ) ) = ( normop ` T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopneg.1 | |- T : ~H --> ~H |
|
| 2 | neg1cn | |- -u 1 e. CC |
|
| 3 | homval | |- ( ( -u 1 e. CC /\ T : ~H --> ~H /\ y e. ~H ) -> ( ( -u 1 .op T ) ` y ) = ( -u 1 .h ( T ` y ) ) ) |
|
| 4 | 2 1 3 | mp3an12 | |- ( y e. ~H -> ( ( -u 1 .op T ) ` y ) = ( -u 1 .h ( T ` y ) ) ) |
| 5 | 4 | fveq2d | |- ( y e. ~H -> ( normh ` ( ( -u 1 .op T ) ` y ) ) = ( normh ` ( -u 1 .h ( T ` y ) ) ) ) |
| 6 | 1 | ffvelcdmi | |- ( y e. ~H -> ( T ` y ) e. ~H ) |
| 7 | normneg | |- ( ( T ` y ) e. ~H -> ( normh ` ( -u 1 .h ( T ` y ) ) ) = ( normh ` ( T ` y ) ) ) |
|
| 8 | 6 7 | syl | |- ( y e. ~H -> ( normh ` ( -u 1 .h ( T ` y ) ) ) = ( normh ` ( T ` y ) ) ) |
| 9 | 5 8 | eqtrd | |- ( y e. ~H -> ( normh ` ( ( -u 1 .op T ) ` y ) ) = ( normh ` ( T ` y ) ) ) |
| 10 | 9 | eqeq2d | |- ( y e. ~H -> ( x = ( normh ` ( ( -u 1 .op T ) ` y ) ) <-> x = ( normh ` ( T ` y ) ) ) ) |
| 11 | 10 | anbi2d | |- ( y e. ~H -> ( ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( ( -u 1 .op T ) ` y ) ) ) <-> ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) ) ) |
| 12 | 11 | rexbiia | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( ( -u 1 .op T ) ` y ) ) ) <-> E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) ) |
| 13 | 12 | abbii | |- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( ( -u 1 .op T ) ` y ) ) ) } = { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } |
| 14 | 13 | supeq1i | |- sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( ( -u 1 .op T ) ` y ) ) ) } , RR* , < ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) |
| 15 | homulcl | |- ( ( -u 1 e. CC /\ T : ~H --> ~H ) -> ( -u 1 .op T ) : ~H --> ~H ) |
|
| 16 | 2 1 15 | mp2an | |- ( -u 1 .op T ) : ~H --> ~H |
| 17 | nmopval | |- ( ( -u 1 .op T ) : ~H --> ~H -> ( normop ` ( -u 1 .op T ) ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( ( -u 1 .op T ) ` y ) ) ) } , RR* , < ) ) |
|
| 18 | 16 17 | ax-mp | |- ( normop ` ( -u 1 .op T ) ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( ( -u 1 .op T ) ` y ) ) ) } , RR* , < ) |
| 19 | nmopval | |- ( T : ~H --> ~H -> ( normop ` T ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) ) |
|
| 20 | 1 19 | ax-mp | |- ( normop ` T ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) |
| 21 | 14 18 20 | 3eqtr4i | |- ( normop ` ( -u 1 .op T ) ) = ( normop ` T ) |