This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector equals the norm of its negative. (Contributed by NM, 23-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normneg | |- ( A e. ~H -> ( normh ` ( -u 1 .h A ) ) = ( normh ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | normsub | |- ( ( 0h e. ~H /\ A e. ~H ) -> ( normh ` ( 0h -h A ) ) = ( normh ` ( A -h 0h ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. ~H -> ( normh ` ( 0h -h A ) ) = ( normh ` ( A -h 0h ) ) ) |
| 4 | hv2neg | |- ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) ) |
|
| 5 | 4 | fveq2d | |- ( A e. ~H -> ( normh ` ( 0h -h A ) ) = ( normh ` ( -u 1 .h A ) ) ) |
| 6 | hvsub0 | |- ( A e. ~H -> ( A -h 0h ) = A ) |
|
| 7 | 6 | fveq2d | |- ( A e. ~H -> ( normh ` ( A -h 0h ) ) = ( normh ` A ) ) |
| 8 | 3 5 7 | 3eqtr3d | |- ( A e. ~H -> ( normh ` ( -u 1 .h A ) ) = ( normh ` A ) ) |