This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a linear Hilbert space operator at zero is zero. Remark in Beran p. 99. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnop0 | |- ( T e. LinOp -> ( T ` 0h ) = 0h ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | ax-hv0cl | |- 0h e. ~H |
|
| 3 | 1 2 | hvmulcli | |- ( 1 .h 0h ) e. ~H |
| 4 | ax-hvaddid | |- ( ( 1 .h 0h ) e. ~H -> ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) |
| 6 | ax-hvmulid | |- ( 0h e. ~H -> ( 1 .h 0h ) = 0h ) |
|
| 7 | 2 6 | ax-mp | |- ( 1 .h 0h ) = 0h |
| 8 | 5 7 | eqtri | |- ( ( 1 .h 0h ) +h 0h ) = 0h |
| 9 | 8 | fveq2i | |- ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( T ` 0h ) |
| 10 | lnopl | |- ( ( ( T e. LinOp /\ 1 e. CC ) /\ ( 0h e. ~H /\ 0h e. ~H ) ) -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) ) |
|
| 11 | 2 2 10 | mpanr12 | |- ( ( T e. LinOp /\ 1 e. CC ) -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) ) |
| 12 | 1 11 | mpan2 | |- ( T e. LinOp -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) ) |
| 13 | 9 12 | eqtr3id | |- ( T e. LinOp -> ( T ` 0h ) = ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) ) |
| 14 | lnopf | |- ( T e. LinOp -> T : ~H --> ~H ) |
|
| 15 | ffvelcdm | |- ( ( T : ~H --> ~H /\ 0h e. ~H ) -> ( T ` 0h ) e. ~H ) |
|
| 16 | 2 15 | mpan2 | |- ( T : ~H --> ~H -> ( T ` 0h ) e. ~H ) |
| 17 | 14 16 | syl | |- ( T e. LinOp -> ( T ` 0h ) e. ~H ) |
| 18 | ax-hvmulid | |- ( ( T ` 0h ) e. ~H -> ( 1 .h ( T ` 0h ) ) = ( T ` 0h ) ) |
|
| 19 | 17 18 | syl | |- ( T e. LinOp -> ( 1 .h ( T ` 0h ) ) = ( T ` 0h ) ) |
| 20 | 19 | oveq1d | |- ( T e. LinOp -> ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) = ( ( T ` 0h ) +h ( T ` 0h ) ) ) |
| 21 | 13 20 | eqtrd | |- ( T e. LinOp -> ( T ` 0h ) = ( ( T ` 0h ) +h ( T ` 0h ) ) ) |
| 22 | 21 | oveq1d | |- ( T e. LinOp -> ( ( T ` 0h ) -h ( T ` 0h ) ) = ( ( ( T ` 0h ) +h ( T ` 0h ) ) -h ( T ` 0h ) ) ) |
| 23 | hvsubid | |- ( ( T ` 0h ) e. ~H -> ( ( T ` 0h ) -h ( T ` 0h ) ) = 0h ) |
|
| 24 | 17 23 | syl | |- ( T e. LinOp -> ( ( T ` 0h ) -h ( T ` 0h ) ) = 0h ) |
| 25 | hvpncan | |- ( ( ( T ` 0h ) e. ~H /\ ( T ` 0h ) e. ~H ) -> ( ( ( T ` 0h ) +h ( T ` 0h ) ) -h ( T ` 0h ) ) = ( T ` 0h ) ) |
|
| 26 | 25 | anidms | |- ( ( T ` 0h ) e. ~H -> ( ( ( T ` 0h ) +h ( T ` 0h ) ) -h ( T ` 0h ) ) = ( T ` 0h ) ) |
| 27 | 17 26 | syl | |- ( T e. LinOp -> ( ( ( T ` 0h ) +h ( T ` 0h ) ) -h ( T ` 0h ) ) = ( T ` 0h ) ) |
| 28 | 22 24 27 | 3eqtr3rd | |- ( T e. LinOp -> ( T ` 0h ) = 0h ) |