This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi , the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmopneg.1 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| Assertion | nmopnegi | ⊢ ( normop ‘ ( - 1 ·op 𝑇 ) ) = ( normop ‘ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopneg.1 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 2 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 3 | homval | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) = ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) | |
| 4 | 2 1 3 | mp3an12 | ⊢ ( 𝑦 ∈ ℋ → ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) = ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) = ( normℎ ‘ ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 6 | 1 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 7 | normneg | ⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 10 | 9 | eqeq2d | ⊢ ( 𝑦 ∈ ℋ → ( 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ↔ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 11 | 10 | anbi2d | ⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 12 | 11 | rexbiia | ⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } |
| 14 | 13 | supeq1i | ⊢ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) |
| 15 | homulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( - 1 ·op 𝑇 ) : ℋ ⟶ ℋ ) | |
| 16 | 2 1 15 | mp2an | ⊢ ( - 1 ·op 𝑇 ) : ℋ ⟶ ℋ |
| 17 | nmopval | ⊢ ( ( - 1 ·op 𝑇 ) : ℋ ⟶ ℋ → ( normop ‘ ( - 1 ·op 𝑇 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( normop ‘ ( - 1 ·op 𝑇 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) |
| 19 | nmopval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 20 | 1 19 | ax-mp | ⊢ ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) |
| 21 | 14 18 20 | 3eqtr4i | ⊢ ( normop ‘ ( - 1 ·op 𝑇 ) ) = ( normop ‘ 𝑇 ) |