This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlno0.3 | |- N = ( U normOpOLD W ) |
|
| nmlno0.0 | |- Z = ( U 0op W ) |
||
| nmlno0.7 | |- L = ( U LnOp W ) |
||
| Assertion | nmlno0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) = 0 <-> T = Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlno0.3 | |- N = ( U normOpOLD W ) |
|
| 2 | nmlno0.0 | |- Z = ( U 0op W ) |
|
| 3 | nmlno0.7 | |- L = ( U LnOp W ) |
|
| 4 | oveq1 | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( U LnOp W ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp W ) ) |
|
| 5 | 3 4 | eqtrid | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> L = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp W ) ) |
| 6 | 5 | eleq2d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( T e. L <-> T e. ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp W ) ) ) |
| 7 | oveq1 | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( U normOpOLD W ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ) |
|
| 8 | 1 7 | eqtrid | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> N = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ) |
| 9 | 8 | fveq1d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( N ` T ) = ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` T ) ) |
| 10 | 9 | eqeq1d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( ( N ` T ) = 0 <-> ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` T ) = 0 ) ) |
| 11 | oveq1 | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( U 0op W ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) ) |
|
| 12 | 2 11 | eqtrid | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> Z = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) ) |
| 13 | 12 | eqeq2d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( T = Z <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) ) ) |
| 14 | 10 13 | bibi12d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( ( ( N ` T ) = 0 <-> T = Z ) <-> ( ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` T ) = 0 <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) ) ) ) |
| 15 | 6 14 | imbi12d | |- ( U = if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) -> ( ( T e. L -> ( ( N ` T ) = 0 <-> T = Z ) ) <-> ( T e. ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp W ) -> ( ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` T ) = 0 <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) ) ) ) ) |
| 16 | oveq2 | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp W ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) |
|
| 17 | 16 | eleq2d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( T e. ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp W ) <-> T e. ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) ) |
| 18 | oveq2 | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) |
|
| 19 | 18 | fveq1d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` T ) = ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` T ) ) |
| 20 | 19 | eqeq1d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` T ) = 0 <-> ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` T ) = 0 ) ) |
| 21 | oveq2 | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) |
|
| 22 | 21 | eqeq2d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) ) |
| 23 | 20 22 | bibi12d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` T ) = 0 <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) ) <-> ( ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` T ) = 0 <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) ) ) |
| 24 | 17 23 | imbi12d | |- ( W = if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) -> ( ( T e. ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp W ) -> ( ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD W ) ` T ) = 0 <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op W ) ) ) <-> ( T e. ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) -> ( ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` T ) = 0 <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) ) ) ) |
| 25 | eqid | |- ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) |
|
| 26 | eqid | |- ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) |
|
| 27 | eqid | |- ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) |
|
| 28 | elimnvu | |- if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) e. NrmCVec |
|
| 29 | elimnvu | |- if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) e. NrmCVec |
|
| 30 | 25 26 27 28 29 | nmlno0i | |- ( T e. ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) LnOp if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) -> ( ( ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) normOpOLD if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ` T ) = 0 <-> T = ( if ( U e. NrmCVec , U , <. <. + , x. >. , abs >. ) 0op if ( W e. NrmCVec , W , <. <. + , x. >. , abs >. ) ) ) ) |
| 31 | 15 24 30 | dedth2h | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. L -> ( ( N ` T ) = 0 <-> T = Z ) ) ) |
| 32 | 31 | 3impia | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) = 0 <-> T = Z ) ) |