This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an operator is an extended real. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoxr.1 | |- X = ( BaseSet ` U ) |
|
| nmoxr.2 | |- Y = ( BaseSet ` W ) |
||
| nmoxr.3 | |- N = ( U normOpOLD W ) |
||
| Assertion | nmoxr | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoxr.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmoxr.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | nmoxr.3 | |- N = ( U normOpOLD W ) |
|
| 4 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 5 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 6 | 1 2 4 5 3 | nmooval | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) ) |
| 7 | 2 5 | nmosetre | |- ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR ) |
| 8 | ressxr | |- RR C_ RR* |
|
| 9 | 7 8 | sstrdi | |- ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR* ) |
| 10 | supxrcl | |- ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR* -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) |
|
| 11 | 9 10 | syl | |- ( ( W e. NrmCVec /\ T : X --> Y ) -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) |
| 12 | 11 | 3adant1 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) |
| 13 | 6 12 | eqeltrd | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* ) |