This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnon0.1 | |- X = ( BaseSet ` U ) |
|
| lnon0.6 | |- Z = ( 0vec ` U ) |
||
| lnon0.0 | |- O = ( U 0op W ) |
||
| lnon0.7 | |- L = ( U LnOp W ) |
||
| Assertion | lnon0 | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ T =/= O ) -> E. x e. X x =/= Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnon0.1 | |- X = ( BaseSet ` U ) |
|
| 2 | lnon0.6 | |- Z = ( 0vec ` U ) |
|
| 3 | lnon0.0 | |- O = ( U 0op W ) |
|
| 4 | lnon0.7 | |- L = ( U LnOp W ) |
|
| 5 | ralnex | |- ( A. x e. X -. x =/= Z <-> -. E. x e. X x =/= Z ) |
|
| 6 | nne | |- ( -. x =/= Z <-> x = Z ) |
|
| 7 | 6 | ralbii | |- ( A. x e. X -. x =/= Z <-> A. x e. X x = Z ) |
| 8 | 5 7 | bitr3i | |- ( -. E. x e. X x =/= Z <-> A. x e. X x = Z ) |
| 9 | fveq2 | |- ( x = Z -> ( T ` x ) = ( T ` Z ) ) |
|
| 10 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 11 | eqid | |- ( 0vec ` W ) = ( 0vec ` W ) |
|
| 12 | 1 10 2 11 4 | lno0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` Z ) = ( 0vec ` W ) ) |
| 13 | 9 12 | sylan9eqr | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ x = Z ) -> ( T ` x ) = ( 0vec ` W ) ) |
| 14 | 13 | ex | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( x = Z -> ( T ` x ) = ( 0vec ` W ) ) ) |
| 15 | 14 | ralimdv | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( A. x e. X x = Z -> A. x e. X ( T ` x ) = ( 0vec ` W ) ) ) |
| 16 | 1 10 4 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> ( BaseSet ` W ) ) |
| 17 | 16 | ffnd | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T Fn X ) |
| 18 | 15 17 | jctild | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( A. x e. X x = Z -> ( T Fn X /\ A. x e. X ( T ` x ) = ( 0vec ` W ) ) ) ) |
| 19 | fconstfv | |- ( T : X --> { ( 0vec ` W ) } <-> ( T Fn X /\ A. x e. X ( T ` x ) = ( 0vec ` W ) ) ) |
|
| 20 | fvex | |- ( 0vec ` W ) e. _V |
|
| 21 | 20 | fconst2 | |- ( T : X --> { ( 0vec ` W ) } <-> T = ( X X. { ( 0vec ` W ) } ) ) |
| 22 | 19 21 | bitr3i | |- ( ( T Fn X /\ A. x e. X ( T ` x ) = ( 0vec ` W ) ) <-> T = ( X X. { ( 0vec ` W ) } ) ) |
| 23 | 18 22 | imbitrdi | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( A. x e. X x = Z -> T = ( X X. { ( 0vec ` W ) } ) ) ) |
| 24 | 1 11 3 | 0ofval | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> O = ( X X. { ( 0vec ` W ) } ) ) |
| 25 | 24 | 3adant3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> O = ( X X. { ( 0vec ` W ) } ) ) |
| 26 | 25 | eqeq2d | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T = O <-> T = ( X X. { ( 0vec ` W ) } ) ) ) |
| 27 | 23 26 | sylibrd | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( A. x e. X x = Z -> T = O ) ) |
| 28 | 8 27 | biimtrid | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( -. E. x e. X x =/= Z -> T = O ) ) |
| 29 | 28 | necon1ad | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T =/= O -> E. x e. X x =/= Z ) ) |
| 30 | 29 | imp | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ T =/= O ) -> E. x e. X x =/= Z ) |