This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nminvr.n | |- N = ( norm ` R ) |
|
| nminvr.u | |- U = ( Unit ` R ) |
||
| nminvr.i | |- I = ( invr ` R ) |
||
| Assertion | nminvr | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( I ` A ) ) = ( 1 / ( N ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nminvr.n | |- N = ( norm ` R ) |
|
| 2 | nminvr.u | |- U = ( Unit ` R ) |
|
| 3 | nminvr.i | |- I = ( invr ` R ) |
|
| 4 | nrgngp | |- ( R e. NrmRing -> R e. NrmGrp ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> R e. NrmGrp ) |
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | 6 2 | unitcl | |- ( A e. U -> A e. ( Base ` R ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> A e. ( Base ` R ) ) |
| 9 | 6 1 | nmcl | |- ( ( R e. NrmGrp /\ A e. ( Base ` R ) ) -> ( N ` A ) e. RR ) |
| 10 | 5 8 9 | syl2anc | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) e. RR ) |
| 11 | 10 | recnd | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) e. CC ) |
| 12 | nzrring | |- ( R e. NzRing -> R e. Ring ) |
|
| 13 | 12 | 3ad2ant2 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> R e. Ring ) |
| 14 | simp3 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> A e. U ) |
|
| 15 | 2 3 6 | ringinvcl | |- ( ( R e. Ring /\ A e. U ) -> ( I ` A ) e. ( Base ` R ) ) |
| 16 | 13 14 15 | syl2anc | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( I ` A ) e. ( Base ` R ) ) |
| 17 | 6 1 | nmcl | |- ( ( R e. NrmGrp /\ ( I ` A ) e. ( Base ` R ) ) -> ( N ` ( I ` A ) ) e. RR ) |
| 18 | 5 16 17 | syl2anc | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( I ` A ) ) e. RR ) |
| 19 | 18 | recnd | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( I ` A ) ) e. CC ) |
| 20 | 1 2 | unitnmn0 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) =/= 0 ) |
| 21 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 22 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 23 | 2 3 21 22 | unitrinv | |- ( ( R e. Ring /\ A e. U ) -> ( A ( .r ` R ) ( I ` A ) ) = ( 1r ` R ) ) |
| 24 | 13 14 23 | syl2anc | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( A ( .r ` R ) ( I ` A ) ) = ( 1r ` R ) ) |
| 25 | 24 | fveq2d | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( A ( .r ` R ) ( I ` A ) ) ) = ( N ` ( 1r ` R ) ) ) |
| 26 | simp1 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> R e. NrmRing ) |
|
| 27 | 6 1 21 | nmmul | |- ( ( R e. NrmRing /\ A e. ( Base ` R ) /\ ( I ` A ) e. ( Base ` R ) ) -> ( N ` ( A ( .r ` R ) ( I ` A ) ) ) = ( ( N ` A ) x. ( N ` ( I ` A ) ) ) ) |
| 28 | 26 8 16 27 | syl3anc | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( A ( .r ` R ) ( I ` A ) ) ) = ( ( N ` A ) x. ( N ` ( I ` A ) ) ) ) |
| 29 | 1 22 | nm1 | |- ( ( R e. NrmRing /\ R e. NzRing ) -> ( N ` ( 1r ` R ) ) = 1 ) |
| 30 | 29 | 3adant3 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( 1r ` R ) ) = 1 ) |
| 31 | 25 28 30 | 3eqtr3d | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( ( N ` A ) x. ( N ` ( I ` A ) ) ) = 1 ) |
| 32 | 11 19 20 31 | mvllmuld | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` ( I ` A ) ) = ( 1 / ( N ` A ) ) ) |