This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a unit is nonzero in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nminvr.n | |- N = ( norm ` R ) |
|
| nminvr.u | |- U = ( Unit ` R ) |
||
| Assertion | unitnmn0 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nminvr.n | |- N = ( norm ` R ) |
|
| 2 | nminvr.u | |- U = ( Unit ` R ) |
|
| 3 | nrgngp | |- ( R e. NrmRing -> R e. NrmGrp ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> R e. NrmGrp ) |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 2 | unitcl | |- ( A e. U -> A e. ( Base ` R ) ) |
| 7 | 6 | 3ad2ant3 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> A e. ( Base ` R ) ) |
| 8 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 9 | 2 8 | nzrunit | |- ( ( R e. NzRing /\ A e. U ) -> A =/= ( 0g ` R ) ) |
| 10 | 9 | 3adant1 | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> A =/= ( 0g ` R ) ) |
| 11 | 5 1 8 | nmne0 | |- ( ( R e. NrmGrp /\ A e. ( Base ` R ) /\ A =/= ( 0g ` R ) ) -> ( N ` A ) =/= 0 ) |
| 12 | 4 7 10 11 | syl3anc | |- ( ( R e. NrmRing /\ R e. NzRing /\ A e. U ) -> ( N ` A ) =/= 0 ) |