This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmdvr.x | |- X = ( Base ` R ) |
|
| nmdvr.n | |- N = ( norm ` R ) |
||
| nmdvr.u | |- U = ( Unit ` R ) |
||
| nmdvr.d | |- ./ = ( /r ` R ) |
||
| Assertion | nmdvr | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` ( A ./ B ) ) = ( ( N ` A ) / ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmdvr.x | |- X = ( Base ` R ) |
|
| 2 | nmdvr.n | |- N = ( norm ` R ) |
|
| 3 | nmdvr.u | |- U = ( Unit ` R ) |
|
| 4 | nmdvr.d | |- ./ = ( /r ` R ) |
|
| 5 | simpll | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> R e. NrmRing ) |
|
| 6 | simprl | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> A e. X ) |
|
| 7 | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> R e. Ring ) |
| 9 | simprr | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> B e. U ) |
|
| 10 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 11 | 3 10 1 | ringinvcl | |- ( ( R e. Ring /\ B e. U ) -> ( ( invr ` R ) ` B ) e. X ) |
| 12 | 8 9 11 | syl2anc | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( ( invr ` R ) ` B ) e. X ) |
| 13 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 14 | 1 2 13 | nmmul | |- ( ( R e. NrmRing /\ A e. X /\ ( ( invr ` R ) ` B ) e. X ) -> ( N ` ( A ( .r ` R ) ( ( invr ` R ) ` B ) ) ) = ( ( N ` A ) x. ( N ` ( ( invr ` R ) ` B ) ) ) ) |
| 15 | 5 6 12 14 | syl3anc | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` ( A ( .r ` R ) ( ( invr ` R ) ` B ) ) ) = ( ( N ` A ) x. ( N ` ( ( invr ` R ) ` B ) ) ) ) |
| 16 | simplr | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> R e. NzRing ) |
|
| 17 | 2 3 10 | nminvr | |- ( ( R e. NrmRing /\ R e. NzRing /\ B e. U ) -> ( N ` ( ( invr ` R ) ` B ) ) = ( 1 / ( N ` B ) ) ) |
| 18 | 5 16 9 17 | syl3anc | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` ( ( invr ` R ) ` B ) ) = ( 1 / ( N ` B ) ) ) |
| 19 | 18 | oveq2d | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( ( N ` A ) x. ( N ` ( ( invr ` R ) ` B ) ) ) = ( ( N ` A ) x. ( 1 / ( N ` B ) ) ) ) |
| 20 | 15 19 | eqtrd | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` ( A ( .r ` R ) ( ( invr ` R ) ` B ) ) ) = ( ( N ` A ) x. ( 1 / ( N ` B ) ) ) ) |
| 21 | 1 13 3 10 4 | dvrval | |- ( ( A e. X /\ B e. U ) -> ( A ./ B ) = ( A ( .r ` R ) ( ( invr ` R ) ` B ) ) ) |
| 22 | 21 | adantl | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( A ./ B ) = ( A ( .r ` R ) ( ( invr ` R ) ` B ) ) ) |
| 23 | 22 | fveq2d | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` ( A ./ B ) ) = ( N ` ( A ( .r ` R ) ( ( invr ` R ) ` B ) ) ) ) |
| 24 | nrgngp | |- ( R e. NrmRing -> R e. NrmGrp ) |
|
| 25 | 24 | ad2antrr | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> R e. NrmGrp ) |
| 26 | 1 2 | nmcl | |- ( ( R e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) |
| 27 | 25 6 26 | syl2anc | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` A ) e. RR ) |
| 28 | 27 | recnd | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` A ) e. CC ) |
| 29 | 1 3 | unitss | |- U C_ X |
| 30 | 29 9 | sselid | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> B e. X ) |
| 31 | 1 2 | nmcl | |- ( ( R e. NrmGrp /\ B e. X ) -> ( N ` B ) e. RR ) |
| 32 | 25 30 31 | syl2anc | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` B ) e. RR ) |
| 33 | 32 | recnd | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` B ) e. CC ) |
| 34 | 2 3 | unitnmn0 | |- ( ( R e. NrmRing /\ R e. NzRing /\ B e. U ) -> ( N ` B ) =/= 0 ) |
| 35 | 34 | 3expa | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ B e. U ) -> ( N ` B ) =/= 0 ) |
| 36 | 35 | adantrl | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` B ) =/= 0 ) |
| 37 | 28 33 36 | divrecd | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( ( N ` A ) / ( N ` B ) ) = ( ( N ` A ) x. ( 1 / ( N ` B ) ) ) ) |
| 38 | 20 23 37 | 3eqtr4d | |- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( A e. X /\ B e. U ) ) -> ( N ` ( A ./ B ) ) = ( ( N ` A ) / ( N ` B ) ) ) |