This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nminvr.n | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
| nminvr.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| nminvr.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | nminvr | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 1 / ( 𝑁 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nminvr.n | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
| 2 | nminvr.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | nminvr.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 4 | nrgngp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝑅 ∈ NrmGrp ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | 6 2 | unitcl | ⊢ ( 𝐴 ∈ 𝑈 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 9 | 6 1 | nmcl | ⊢ ( ( 𝑅 ∈ NrmGrp ∧ 𝐴 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 10 | 5 8 9 | syl2anc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 11 | 10 | recnd | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℂ ) |
| 12 | nzrring | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) | |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 14 | simp3 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ∈ 𝑈 ) | |
| 15 | 2 3 6 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ) → ( 𝐼 ‘ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝐼 ‘ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 6 1 | nmcl | ⊢ ( ( 𝑅 ∈ NrmGrp ∧ ( 𝐼 ‘ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ ℝ ) |
| 18 | 5 16 17 | syl2anc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ ℝ ) |
| 19 | 18 | recnd | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) ∈ ℂ ) |
| 20 | 1 2 | unitnmn0 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ 𝐴 ) ≠ 0 ) |
| 21 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 22 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 23 | 2 3 21 22 | unitrinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ) → ( 𝐴 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝐴 ) ) = ( 1r ‘ 𝑅 ) ) |
| 24 | 13 14 23 | syl2anc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝐴 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝐴 ) ) = ( 1r ‘ 𝑅 ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝐴 ) ) ) = ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 26 | simp1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝑅 ∈ NrmRing ) | |
| 27 | 6 1 21 | nmmul | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐼 ‘ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |
| 28 | 26 8 16 27 | syl3anc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |
| 29 | 1 22 | nm1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 30 | 29 | 3adant3 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 31 | 25 28 30 | 3eqtr3d | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) ) = 1 ) |
| 32 | 11 19 20 31 | mvllmuld | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 1 / ( 𝑁 ‘ 𝐴 ) ) ) |