This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007) (Proof shortened by Mario Carneiro, 10-Jan-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcvcn.1 | |- N = ( normCV ` U ) |
|
| nmcvcn.2 | |- C = ( IndMet ` U ) |
||
| nmcvcn.j | |- J = ( MetOpen ` C ) |
||
| nmcvcn.k | |- K = ( topGen ` ran (,) ) |
||
| Assertion | nmcvcn | |- ( U e. NrmCVec -> N e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcvcn.1 | |- N = ( normCV ` U ) |
|
| 2 | nmcvcn.2 | |- C = ( IndMet ` U ) |
|
| 3 | nmcvcn.j | |- J = ( MetOpen ` C ) |
|
| 4 | nmcvcn.k | |- K = ( topGen ` ran (,) ) |
|
| 5 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 6 | 5 1 | nvf | |- ( U e. NrmCVec -> N : ( BaseSet ` U ) --> RR ) |
| 7 | simprr | |- ( ( U e. NrmCVec /\ ( x e. ( BaseSet ` U ) /\ e e. RR+ ) ) -> e e. RR+ ) |
|
| 8 | 5 1 | nvcl | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) -> ( N ` x ) e. RR ) |
| 9 | 8 | ex | |- ( U e. NrmCVec -> ( x e. ( BaseSet ` U ) -> ( N ` x ) e. RR ) ) |
| 10 | 5 1 | nvcl | |- ( ( U e. NrmCVec /\ y e. ( BaseSet ` U ) ) -> ( N ` y ) e. RR ) |
| 11 | 10 | ex | |- ( U e. NrmCVec -> ( y e. ( BaseSet ` U ) -> ( N ` y ) e. RR ) ) |
| 12 | 9 11 | anim12d | |- ( U e. NrmCVec -> ( ( x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( ( N ` x ) e. RR /\ ( N ` y ) e. RR ) ) ) |
| 13 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 14 | 13 | remet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) |
| 15 | metcl | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) /\ ( N ` x ) e. RR /\ ( N ` y ) e. RR ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR ) |
|
| 16 | 14 15 | mp3an1 | |- ( ( ( N ` x ) e. RR /\ ( N ` y ) e. RR ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR ) |
| 17 | 12 16 | syl6 | |- ( U e. NrmCVec -> ( ( x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR ) ) |
| 18 | 17 | 3impib | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR ) |
| 19 | 5 2 | imsmet | |- ( U e. NrmCVec -> C e. ( Met ` ( BaseSet ` U ) ) ) |
| 20 | metcl | |- ( ( C e. ( Met ` ( BaseSet ` U ) ) /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( x C y ) e. RR ) |
|
| 21 | 19 20 | syl3an1 | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( x C y ) e. RR ) |
| 22 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 23 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 24 | 5 22 23 1 | nvabs | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( abs ` ( ( N ` x ) - ( N ` y ) ) ) <_ ( N ` ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) ) |
| 25 | 12 | 3impib | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( ( N ` x ) e. RR /\ ( N ` y ) e. RR ) ) |
| 26 | 13 | remetdval | |- ( ( ( N ` x ) e. RR /\ ( N ` y ) e. RR ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) = ( abs ` ( ( N ` x ) - ( N ` y ) ) ) ) |
| 27 | 25 26 | syl | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) = ( abs ` ( ( N ` x ) - ( N ` y ) ) ) ) |
| 28 | 5 22 23 1 2 | imsdval2 | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( x C y ) = ( N ` ( x ( +v ` U ) ( -u 1 ( .sOLD ` U ) y ) ) ) ) |
| 29 | 24 27 28 | 3brtr4d | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) <_ ( x C y ) ) |
| 30 | 18 21 29 | jca31 | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) /\ y e. ( BaseSet ` U ) ) -> ( ( ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR /\ ( x C y ) e. RR ) /\ ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) <_ ( x C y ) ) ) |
| 31 | 30 | 3expa | |- ( ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) /\ y e. ( BaseSet ` U ) ) -> ( ( ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR /\ ( x C y ) e. RR ) /\ ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) <_ ( x C y ) ) ) |
| 32 | rpre | |- ( e e. RR+ -> e e. RR ) |
|
| 33 | lelttr | |- ( ( ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR /\ ( x C y ) e. RR /\ e e. RR ) -> ( ( ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) <_ ( x C y ) /\ ( x C y ) < e ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
|
| 34 | 33 | 3expa | |- ( ( ( ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR /\ ( x C y ) e. RR ) /\ e e. RR ) -> ( ( ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) <_ ( x C y ) /\ ( x C y ) < e ) -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
| 35 | 34 | expdimp | |- ( ( ( ( ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR /\ ( x C y ) e. RR ) /\ e e. RR ) /\ ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) <_ ( x C y ) ) -> ( ( x C y ) < e -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
| 36 | 35 | an32s | |- ( ( ( ( ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) e. RR /\ ( x C y ) e. RR ) /\ ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) <_ ( x C y ) ) /\ e e. RR ) -> ( ( x C y ) < e -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
| 37 | 31 32 36 | syl2an | |- ( ( ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) /\ y e. ( BaseSet ` U ) ) /\ e e. RR+ ) -> ( ( x C y ) < e -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
| 38 | 37 | ex | |- ( ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) /\ y e. ( BaseSet ` U ) ) -> ( e e. RR+ -> ( ( x C y ) < e -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) ) |
| 39 | 38 | ralrimdva | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) -> ( e e. RR+ -> A. y e. ( BaseSet ` U ) ( ( x C y ) < e -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) ) |
| 40 | 39 | impr | |- ( ( U e. NrmCVec /\ ( x e. ( BaseSet ` U ) /\ e e. RR+ ) ) -> A. y e. ( BaseSet ` U ) ( ( x C y ) < e -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
| 41 | breq2 | |- ( d = e -> ( ( x C y ) < d <-> ( x C y ) < e ) ) |
|
| 42 | 41 | rspceaimv | |- ( ( e e. RR+ /\ A. y e. ( BaseSet ` U ) ( ( x C y ) < e -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) -> E. d e. RR+ A. y e. ( BaseSet ` U ) ( ( x C y ) < d -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
| 43 | 7 40 42 | syl2anc | |- ( ( U e. NrmCVec /\ ( x e. ( BaseSet ` U ) /\ e e. RR+ ) ) -> E. d e. RR+ A. y e. ( BaseSet ` U ) ( ( x C y ) < d -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
| 44 | 43 | ralrimivva | |- ( U e. NrmCVec -> A. x e. ( BaseSet ` U ) A. e e. RR+ E. d e. RR+ A. y e. ( BaseSet ` U ) ( ( x C y ) < d -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) |
| 45 | 5 2 | imsxmet | |- ( U e. NrmCVec -> C e. ( *Met ` ( BaseSet ` U ) ) ) |
| 46 | 13 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 47 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 48 | 13 47 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 49 | 4 48 | eqtri | |- K = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 50 | 3 49 | metcn | |- ( ( C e. ( *Met ` ( BaseSet ` U ) ) /\ ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) ) -> ( N e. ( J Cn K ) <-> ( N : ( BaseSet ` U ) --> RR /\ A. x e. ( BaseSet ` U ) A. e e. RR+ E. d e. RR+ A. y e. ( BaseSet ` U ) ( ( x C y ) < d -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) ) ) |
| 51 | 45 46 50 | sylancl | |- ( U e. NrmCVec -> ( N e. ( J Cn K ) <-> ( N : ( BaseSet ` U ) --> RR /\ A. x e. ( BaseSet ` U ) A. e e. RR+ E. d e. RR+ A. y e. ( BaseSet ` U ) ( ( x C y ) < d -> ( ( N ` x ) ( ( abs o. - ) |` ( RR X. RR ) ) ( N ` y ) ) < e ) ) ) ) |
| 52 | 6 44 51 | mpbir2and | |- ( U e. NrmCVec -> N e. ( J Cn K ) ) |