This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsdval2.1 | |- X = ( BaseSet ` U ) |
|
| imsdval2.2 | |- G = ( +v ` U ) |
||
| imsdval2.4 | |- S = ( .sOLD ` U ) |
||
| imsdval2.6 | |- N = ( normCV ` U ) |
||
| imsdval2.8 | |- D = ( IndMet ` U ) |
||
| Assertion | imsdval2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsdval2.1 | |- X = ( BaseSet ` U ) |
|
| 2 | imsdval2.2 | |- G = ( +v ` U ) |
|
| 3 | imsdval2.4 | |- S = ( .sOLD ` U ) |
|
| 4 | imsdval2.6 | |- N = ( normCV ` U ) |
|
| 5 | imsdval2.8 | |- D = ( IndMet ` U ) |
|
| 6 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 7 | 1 6 4 5 | imsdval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -v ` U ) B ) ) ) |
| 8 | 1 2 3 6 | nvmval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) = ( A G ( -u 1 S B ) ) ) |
| 9 | 8 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A ( -v ` U ) B ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
| 10 | 7 9 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |