This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmcoplb | |- ( ( T e. LinOp /\ T e. ContOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( T e. ( LinOp i^i ContOp ) <-> ( T e. LinOp /\ T e. ContOp ) ) |
|
| 2 | fveq1 | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( T ` A ) = ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) |
|
| 3 | 2 | fveq2d | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( normh ` ( T ` A ) ) = ( normh ` ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) ) |
| 4 | fveq2 | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( normop ` T ) = ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) ) |
|
| 5 | 4 | oveq1d | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( normop ` T ) x. ( normh ` A ) ) = ( ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) x. ( normh ` A ) ) ) |
| 6 | 3 5 | breq12d | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( normh ` ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) <_ ( ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) x. ( normh ` A ) ) ) ) |
| 7 | 6 | imbi2d | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) <-> ( A e. ~H -> ( normh ` ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) <_ ( ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) x. ( normh ` A ) ) ) ) ) |
| 8 | idlnop | |- ( _I |` ~H ) e. LinOp |
|
| 9 | idcnop | |- ( _I |` ~H ) e. ContOp |
|
| 10 | elin | |- ( ( _I |` ~H ) e. ( LinOp i^i ContOp ) <-> ( ( _I |` ~H ) e. LinOp /\ ( _I |` ~H ) e. ContOp ) ) |
|
| 11 | 8 9 10 | mpbir2an | |- ( _I |` ~H ) e. ( LinOp i^i ContOp ) |
| 12 | 11 | elimel | |- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) |
| 13 | elin | |- ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) <-> ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) ) |
|
| 14 | 12 13 | mpbi | |- ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) |
| 15 | 14 | simpli | |- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp |
| 16 | 14 | simpri | |- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp |
| 17 | 15 16 | nmcoplbi | |- ( A e. ~H -> ( normh ` ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) <_ ( ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) x. ( normh ` A ) ) ) |
| 18 | 7 17 | dedth | |- ( T e. ( LinOp i^i ContOp ) -> ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
| 19 | 18 | imp | |- ( ( T e. ( LinOp i^i ContOp ) /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 20 | 1 19 | sylanbr | |- ( ( ( T e. LinOp /\ T e. ContOp ) /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 21 | 20 | 3impa | |- ( ( T e. LinOp /\ T e. ContOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |