This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idcnop | |- ( _I |` ~H ) e. ContOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | |- ( _I |` ~H ) : ~H -1-1-onto-> ~H |
|
| 2 | f1of | |- ( ( _I |` ~H ) : ~H -1-1-onto-> ~H -> ( _I |` ~H ) : ~H --> ~H ) |
|
| 3 | 1 2 | ax-mp | |- ( _I |` ~H ) : ~H --> ~H |
| 4 | id | |- ( y e. RR+ -> y e. RR+ ) |
|
| 5 | fvresi | |- ( w e. ~H -> ( ( _I |` ~H ) ` w ) = w ) |
|
| 6 | fvresi | |- ( x e. ~H -> ( ( _I |` ~H ) ` x ) = x ) |
|
| 7 | 5 6 | oveqan12rd | |- ( ( x e. ~H /\ w e. ~H ) -> ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) = ( w -h x ) ) |
| 8 | 7 | fveq2d | |- ( ( x e. ~H /\ w e. ~H ) -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) = ( normh ` ( w -h x ) ) ) |
| 9 | 8 | breq1d | |- ( ( x e. ~H /\ w e. ~H ) -> ( ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y <-> ( normh ` ( w -h x ) ) < y ) ) |
| 10 | 9 | biimprd | |- ( ( x e. ~H /\ w e. ~H ) -> ( ( normh ` ( w -h x ) ) < y -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) |
| 11 | 10 | ralrimiva | |- ( x e. ~H -> A. w e. ~H ( ( normh ` ( w -h x ) ) < y -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) |
| 12 | breq2 | |- ( z = y -> ( ( normh ` ( w -h x ) ) < z <-> ( normh ` ( w -h x ) ) < y ) ) |
|
| 13 | 12 | rspceaimv | |- ( ( y e. RR+ /\ A. w e. ~H ( ( normh ` ( w -h x ) ) < y -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) |
| 14 | 4 11 13 | syl2anr | |- ( ( x e. ~H /\ y e. RR+ ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) |
| 15 | 14 | rgen2 | |- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) |
| 16 | elcnop | |- ( ( _I |` ~H ) e. ContOp <-> ( ( _I |` ~H ) : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) ) |
|
| 17 | 3 15 16 | mpbir2an | |- ( _I |` ~H ) e. ContOp |