This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmcoplb | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ) | |
| 2 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ‘ 𝐴 ) = ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( normop ‘ 𝑇 ) = ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 6 | 3 5 | breq12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) ) |
| 8 | idlnop | ⊢ ( I ↾ ℋ ) ∈ LinOp | |
| 9 | idcnop | ⊢ ( I ↾ ℋ ) ∈ ContOp | |
| 10 | elin | ⊢ ( ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) ↔ ( ( I ↾ ℋ ) ∈ LinOp ∧ ( I ↾ ℋ ) ∈ ContOp ) ) | |
| 11 | 8 9 10 | mpbir2an | ⊢ ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) |
| 12 | 11 | elimel | ⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) |
| 13 | elin | ⊢ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) ↔ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) ) | |
| 14 | 12 13 | mpbi | ⊢ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) |
| 15 | 14 | simpli | ⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp |
| 16 | 14 | simpri | ⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp |
| 17 | 15 16 | nmcoplbi | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 18 | 7 17 | dedth | ⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 19 | 18 | imp | ⊢ ( ( 𝑇 ∈ ( LinOp ∩ ContOp ) ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 20 | 1 19 | sylanbr | ⊢ ( ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 21 | 20 | 3impa | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |