This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an operator is greater than minus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoxr.1 | |- X = ( BaseSet ` U ) |
|
| nmoxr.2 | |- Y = ( BaseSet ` W ) |
||
| nmoxr.3 | |- N = ( U normOpOLD W ) |
||
| Assertion | nmogtmnf | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> -oo < ( N ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoxr.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmoxr.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | nmoxr.3 | |- N = ( U normOpOLD W ) |
|
| 4 | 1 2 3 | nmorepnf | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) ) |
| 5 | df-ne | |- ( ( N ` T ) =/= +oo <-> -. ( N ` T ) = +oo ) |
|
| 6 | 4 5 | bitrdi | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) ) |
| 7 | xor3 | |- ( -. ( ( N ` T ) e. RR <-> ( N ` T ) = +oo ) <-> ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) ) |
|
| 8 | nbior | |- ( -. ( ( N ` T ) e. RR <-> ( N ` T ) = +oo ) -> ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) ) |
|
| 9 | 7 8 | sylbir | |- ( ( ( N ` T ) e. RR <-> -. ( N ` T ) = +oo ) -> ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) ) |
| 10 | mnfltxr | |- ( ( ( N ` T ) e. RR \/ ( N ` T ) = +oo ) -> -oo < ( N ` T ) ) |
|
| 11 | 6 9 10 | 3syl | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> -oo < ( N ` T ) ) |