This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0oval.1 | |- X = ( BaseSet ` U ) |
|
| 0oval.6 | |- Z = ( 0vec ` W ) |
||
| 0oval.0 | |- O = ( U 0op W ) |
||
| Assertion | 0ofval | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> O = ( X X. { Z } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | 0oval.6 | |- Z = ( 0vec ` W ) |
|
| 3 | 0oval.0 | |- O = ( U 0op W ) |
|
| 4 | fveq2 | |- ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( u = U -> ( BaseSet ` u ) = X ) |
| 6 | 5 | xpeq1d | |- ( u = U -> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) = ( X X. { ( 0vec ` w ) } ) ) |
| 7 | fveq2 | |- ( w = W -> ( 0vec ` w ) = ( 0vec ` W ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( w = W -> ( 0vec ` w ) = Z ) |
| 9 | 8 | sneqd | |- ( w = W -> { ( 0vec ` w ) } = { Z } ) |
| 10 | 9 | xpeq2d | |- ( w = W -> ( X X. { ( 0vec ` w ) } ) = ( X X. { Z } ) ) |
| 11 | df-0o | |- 0op = ( u e. NrmCVec , w e. NrmCVec |-> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) ) |
|
| 12 | 1 | fvexi | |- X e. _V |
| 13 | snex | |- { Z } e. _V |
|
| 14 | 12 13 | xpex | |- ( X X. { Z } ) e. _V |
| 15 | 6 10 11 14 | ovmpo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U 0op W ) = ( X X. { Z } ) ) |
| 16 | 3 15 | eqtrid | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> O = ( X X. { Z } ) ) |