This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bloval.3 | |- N = ( U normOpOLD W ) |
|
| bloval.4 | |- L = ( U LnOp W ) |
||
| bloval.5 | |- B = ( U BLnOp W ) |
||
| Assertion | isblo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. B <-> ( T e. L /\ ( N ` T ) < +oo ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.3 | |- N = ( U normOpOLD W ) |
|
| 2 | bloval.4 | |- L = ( U LnOp W ) |
|
| 3 | bloval.5 | |- B = ( U BLnOp W ) |
|
| 4 | 1 2 3 | bloval | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> B = { t e. L | ( N ` t ) < +oo } ) |
| 5 | 4 | eleq2d | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. B <-> T e. { t e. L | ( N ` t ) < +oo } ) ) |
| 6 | fveq2 | |- ( t = T -> ( N ` t ) = ( N ` T ) ) |
|
| 7 | 6 | breq1d | |- ( t = T -> ( ( N ` t ) < +oo <-> ( N ` T ) < +oo ) ) |
| 8 | 7 | elrab | |- ( T e. { t e. L | ( N ` t ) < +oo } <-> ( T e. L /\ ( N ` T ) < +oo ) ) |
| 9 | 5 8 | bitrdi | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. B <-> ( T e. L /\ ( N ` T ) < +oo ) ) ) |