This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfn0 | |- ( normfn ` ( ~H X. { 0 } ) ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lnfn | |- ( ~H X. { 0 } ) e. LinFn |
|
| 2 | lnfnf | |- ( ( ~H X. { 0 } ) e. LinFn -> ( ~H X. { 0 } ) : ~H --> CC ) |
|
| 3 | nmfnval | |- ( ( ~H X. { 0 } ) : ~H --> CC -> ( normfn ` ( ~H X. { 0 } ) ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } , RR* , < ) ) |
|
| 4 | 1 2 3 | mp2b | |- ( normfn ` ( ~H X. { 0 } ) ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } , RR* , < ) |
| 5 | c0ex | |- 0 e. _V |
|
| 6 | 5 | fvconst2 | |- ( y e. ~H -> ( ( ~H X. { 0 } ) ` y ) = 0 ) |
| 7 | 6 | fveq2d | |- ( y e. ~H -> ( abs ` ( ( ~H X. { 0 } ) ` y ) ) = ( abs ` 0 ) ) |
| 8 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 9 | 7 8 | eqtrdi | |- ( y e. ~H -> ( abs ` ( ( ~H X. { 0 } ) ` y ) ) = 0 ) |
| 10 | 9 | eqeq2d | |- ( y e. ~H -> ( x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) <-> x = 0 ) ) |
| 11 | 10 | anbi2d | |- ( y e. ~H -> ( ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) <-> ( ( normh ` y ) <_ 1 /\ x = 0 ) ) ) |
| 12 | 11 | rexbiia | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) <-> E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) ) |
| 13 | ax-hv0cl | |- 0h e. ~H |
|
| 14 | 0le1 | |- 0 <_ 1 |
|
| 15 | fveq2 | |- ( y = 0h -> ( normh ` y ) = ( normh ` 0h ) ) |
|
| 16 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 17 | 15 16 | eqtrdi | |- ( y = 0h -> ( normh ` y ) = 0 ) |
| 18 | 17 | breq1d | |- ( y = 0h -> ( ( normh ` y ) <_ 1 <-> 0 <_ 1 ) ) |
| 19 | 18 | rspcev | |- ( ( 0h e. ~H /\ 0 <_ 1 ) -> E. y e. ~H ( normh ` y ) <_ 1 ) |
| 20 | 13 14 19 | mp2an | |- E. y e. ~H ( normh ` y ) <_ 1 |
| 21 | r19.41v | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) <-> ( E. y e. ~H ( normh ` y ) <_ 1 /\ x = 0 ) ) |
|
| 22 | 20 21 | mpbiran | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) <-> x = 0 ) |
| 23 | 12 22 | bitri | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) <-> x = 0 ) |
| 24 | 23 | abbii | |- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } = { x | x = 0 } |
| 25 | df-sn | |- { 0 } = { x | x = 0 } |
|
| 26 | 24 25 | eqtr4i | |- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } = { 0 } |
| 27 | 26 | supeq1i | |- sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( abs ` ( ( ~H X. { 0 } ) ` y ) ) ) } , RR* , < ) = sup ( { 0 } , RR* , < ) |
| 28 | xrltso | |- < Or RR* |
|
| 29 | 0xr | |- 0 e. RR* |
|
| 30 | supsn | |- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
|
| 31 | 28 29 30 | mp2an | |- sup ( { 0 } , RR* , < ) = 0 |
| 32 | 4 27 31 | 3eqtri | |- ( normfn ` ( ~H X. { 0 } ) ) = 0 |