This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scaffval.b | |- B = ( Base ` W ) |
|
| scaffval.f | |- F = ( Scalar ` W ) |
||
| scaffval.k | |- K = ( Base ` F ) |
||
| scaffval.a | |- .xb = ( .sf ` W ) |
||
| Assertion | lmodscaf | |- ( W e. LMod -> .xb : ( K X. B ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | |- B = ( Base ` W ) |
|
| 2 | scaffval.f | |- F = ( Scalar ` W ) |
|
| 3 | scaffval.k | |- K = ( Base ` F ) |
|
| 4 | scaffval.a | |- .xb = ( .sf ` W ) |
|
| 5 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 6 | 1 2 5 3 | lmodvscl | |- ( ( W e. LMod /\ x e. K /\ y e. B ) -> ( x ( .s ` W ) y ) e. B ) |
| 7 | 6 | 3expb | |- ( ( W e. LMod /\ ( x e. K /\ y e. B ) ) -> ( x ( .s ` W ) y ) e. B ) |
| 8 | 7 | ralrimivva | |- ( W e. LMod -> A. x e. K A. y e. B ( x ( .s ` W ) y ) e. B ) |
| 9 | 1 2 3 4 5 | scaffval | |- .xb = ( x e. K , y e. B |-> ( x ( .s ` W ) y ) ) |
| 10 | 9 | fmpo | |- ( A. x e. K A. y e. B ( x ( .s ` W ) y ) e. B <-> .xb : ( K X. B ) --> B ) |
| 11 | 8 10 | sylib | |- ( W e. LMod -> .xb : ( K X. B ) --> B ) |