This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " W is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istlm.s | |- .x. = ( .sf ` W ) |
|
| istlm.j | |- J = ( TopOpen ` W ) |
||
| istlm.f | |- F = ( Scalar ` W ) |
||
| istlm.k | |- K = ( TopOpen ` F ) |
||
| Assertion | istlm | |- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istlm.s | |- .x. = ( .sf ` W ) |
|
| 2 | istlm.j | |- J = ( TopOpen ` W ) |
|
| 3 | istlm.f | |- F = ( Scalar ` W ) |
|
| 4 | istlm.k | |- K = ( TopOpen ` F ) |
|
| 5 | anass | |- ( ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) <-> ( W e. ( TopMnd i^i LMod ) /\ ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
|
| 6 | df-3an | |- ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) <-> ( ( W e. TopMnd /\ W e. LMod ) /\ F e. TopRing ) ) |
|
| 7 | elin | |- ( W e. ( TopMnd i^i LMod ) <-> ( W e. TopMnd /\ W e. LMod ) ) |
|
| 8 | 7 | anbi1i | |- ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) <-> ( ( W e. TopMnd /\ W e. LMod ) /\ F e. TopRing ) ) |
| 9 | 6 8 | bitr4i | |- ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) <-> ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) ) |
| 10 | 9 | anbi1i | |- ( ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) <-> ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) ) |
| 11 | fveq2 | |- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
|
| 12 | 11 3 | eqtr4di | |- ( w = W -> ( Scalar ` w ) = F ) |
| 13 | 12 | eleq1d | |- ( w = W -> ( ( Scalar ` w ) e. TopRing <-> F e. TopRing ) ) |
| 14 | fveq2 | |- ( w = W -> ( .sf ` w ) = ( .sf ` W ) ) |
|
| 15 | 14 1 | eqtr4di | |- ( w = W -> ( .sf ` w ) = .x. ) |
| 16 | 12 | fveq2d | |- ( w = W -> ( TopOpen ` ( Scalar ` w ) ) = ( TopOpen ` F ) ) |
| 17 | 16 4 | eqtr4di | |- ( w = W -> ( TopOpen ` ( Scalar ` w ) ) = K ) |
| 18 | fveq2 | |- ( w = W -> ( TopOpen ` w ) = ( TopOpen ` W ) ) |
|
| 19 | 18 2 | eqtr4di | |- ( w = W -> ( TopOpen ` w ) = J ) |
| 20 | 17 19 | oveq12d | |- ( w = W -> ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) = ( K tX J ) ) |
| 21 | 20 19 | oveq12d | |- ( w = W -> ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) = ( ( K tX J ) Cn J ) ) |
| 22 | 15 21 | eleq12d | |- ( w = W -> ( ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) <-> .x. e. ( ( K tX J ) Cn J ) ) ) |
| 23 | 13 22 | anbi12d | |- ( w = W -> ( ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) <-> ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
| 24 | df-tlm | |- TopMod = { w e. ( TopMnd i^i LMod ) | ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) } |
|
| 25 | 23 24 | elrab2 | |- ( W e. TopMod <-> ( W e. ( TopMnd i^i LMod ) /\ ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
| 26 | 5 10 25 | 3bitr4ri | |- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) ) |