This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed subspace H of a Hilbert space. Definition of Beran p. 107. (Contributed by NM, 17-Aug-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isch2 | |- ( H e. CH <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch | |- ( H e. CH <-> ( H e. SH /\ ( ~~>v " ( H ^m NN ) ) C_ H ) ) |
|
| 2 | alcom | |- ( A. f A. x ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> A. x A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) ) |
|
| 3 | 19.23v | |- ( A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( E. f ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) ) |
|
| 4 | vex | |- x e. _V |
|
| 5 | 4 | elima2 | |- ( x e. ( ~~>v " ( H ^m NN ) ) <-> E. f ( f e. ( H ^m NN ) /\ f ~~>v x ) ) |
| 6 | 5 | imbi1i | |- ( ( x e. ( ~~>v " ( H ^m NN ) ) -> x e. H ) <-> ( E. f ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) ) |
| 7 | 3 6 | bitr4i | |- ( A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( x e. ( ~~>v " ( H ^m NN ) ) -> x e. H ) ) |
| 8 | 7 | albii | |- ( A. x A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> A. x ( x e. ( ~~>v " ( H ^m NN ) ) -> x e. H ) ) |
| 9 | df-ss | |- ( ( ~~>v " ( H ^m NN ) ) C_ H <-> A. x ( x e. ( ~~>v " ( H ^m NN ) ) -> x e. H ) ) |
|
| 10 | 8 9 | bitr4i | |- ( A. x A. f ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( ~~>v " ( H ^m NN ) ) C_ H ) |
| 11 | 2 10 | bitri | |- ( A. f A. x ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( ~~>v " ( H ^m NN ) ) C_ H ) |
| 12 | nnex | |- NN e. _V |
|
| 13 | elmapg | |- ( ( H e. SH /\ NN e. _V ) -> ( f e. ( H ^m NN ) <-> f : NN --> H ) ) |
|
| 14 | 12 13 | mpan2 | |- ( H e. SH -> ( f e. ( H ^m NN ) <-> f : NN --> H ) ) |
| 15 | 14 | anbi1d | |- ( H e. SH -> ( ( f e. ( H ^m NN ) /\ f ~~>v x ) <-> ( f : NN --> H /\ f ~~>v x ) ) ) |
| 16 | 15 | imbi1d | |- ( H e. SH -> ( ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
| 17 | 16 | 2albidv | |- ( H e. SH -> ( A. f A. x ( ( f e. ( H ^m NN ) /\ f ~~>v x ) -> x e. H ) <-> A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
| 18 | 11 17 | bitr3id | |- ( H e. SH -> ( ( ~~>v " ( H ^m NN ) ) C_ H <-> A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
| 19 | 18 | pm5.32i | |- ( ( H e. SH /\ ( ~~>v " ( H ^m NN ) ) C_ H ) <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
| 20 | 1 19 | bitri | |- ( H e. CH <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |