This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmspropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| xmspropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| xmspropd.3 | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
||
| xmspropd.4 | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
||
| Assertion | mspropd | |- ( ph -> ( K e. MetSp <-> L e. MetSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmspropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | xmspropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | xmspropd.3 | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
|
| 4 | xmspropd.4 | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
|
| 5 | 1 2 3 4 | xmspropd | |- ( ph -> ( K e. *MetSp <-> L e. *MetSp ) ) |
| 6 | 1 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 7 | 6 | reseq2d | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 8 | 3 7 | eqtr3d | |- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 9 | 2 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` L ) X. ( Base ` L ) ) ) |
| 10 | 9 | reseq2d | |- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 11 | 8 10 | eqtr3d | |- ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 12 | 1 2 | eqtr3d | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 13 | 12 | fveq2d | |- ( ph -> ( Met ` ( Base ` K ) ) = ( Met ` ( Base ` L ) ) ) |
| 14 | 11 13 | eleq12d | |- ( ph -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) <-> ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( Met ` ( Base ` L ) ) ) ) |
| 15 | 5 14 | anbi12d | |- ( ph -> ( ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) <-> ( L e. *MetSp /\ ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( Met ` ( Base ` L ) ) ) ) ) |
| 16 | eqid | |- ( TopOpen ` K ) = ( TopOpen ` K ) |
|
| 17 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 18 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 19 | 16 17 18 | isms | |- ( K e. MetSp <-> ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) ) |
| 20 | eqid | |- ( TopOpen ` L ) = ( TopOpen ` L ) |
|
| 21 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 22 | eqid | |- ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) |
|
| 23 | 20 21 22 | isms | |- ( L e. MetSp <-> ( L e. *MetSp /\ ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( Met ` ( Base ` L ) ) ) ) |
| 24 | 15 19 23 | 3bitr4g | |- ( ph -> ( K e. MetSp <-> L e. MetSp ) ) |