This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubpropd2.1 | |- ( ph -> B = ( Base ` G ) ) |
|
| grpsubpropd2.2 | |- ( ph -> B = ( Base ` H ) ) |
||
| grpsubpropd2.3 | |- ( ph -> G e. Grp ) |
||
| grpsubpropd2.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
||
| Assertion | grpsubpropd2 | |- ( ph -> ( -g ` G ) = ( -g ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubpropd2.1 | |- ( ph -> B = ( Base ` G ) ) |
|
| 2 | grpsubpropd2.2 | |- ( ph -> B = ( Base ` H ) ) |
|
| 3 | grpsubpropd2.3 | |- ( ph -> G e. Grp ) |
|
| 4 | grpsubpropd2.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
|
| 5 | simp1 | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ph ) |
|
| 6 | simp2 | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> a e. ( Base ` G ) ) |
|
| 7 | 1 | 3ad2ant1 | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> B = ( Base ` G ) ) |
| 8 | 6 7 | eleqtrrd | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> a e. B ) |
| 9 | 3 | 3ad2ant1 | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> G e. Grp ) |
| 10 | simp3 | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> b e. ( Base ` G ) ) |
|
| 11 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 12 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 13 | 11 12 | grpinvcl | |- ( ( G e. Grp /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. ( Base ` G ) ) |
| 14 | 9 10 13 | syl2anc | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. ( Base ` G ) ) |
| 15 | 14 7 | eleqtrrd | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. B ) |
| 16 | 4 | oveqrspc2v | |- ( ( ph /\ ( a e. B /\ ( ( invg ` G ) ` b ) e. B ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) ) |
| 17 | 5 8 15 16 | syl12anc | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) ) |
| 18 | 1 2 4 | grpinvpropd | |- ( ph -> ( invg ` G ) = ( invg ` H ) ) |
| 19 | 18 | fveq1d | |- ( ph -> ( ( invg ` G ) ` b ) = ( ( invg ` H ) ` b ) ) |
| 20 | 19 | oveq2d | |- ( ph -> ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 21 | 20 | 3ad2ant1 | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 22 | 17 21 | eqtrd | |- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 23 | 22 | mpoeq3dva | |- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 24 | 1 2 | eqtr3d | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
| 25 | mpoeq12 | |- ( ( ( Base ` G ) = ( Base ` H ) /\ ( Base ` G ) = ( Base ` H ) ) -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
|
| 26 | 24 24 25 | syl2anc | |- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 27 | 23 26 | eqtrd | |- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 28 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 29 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 30 | 11 28 12 29 | grpsubfval | |- ( -g ` G ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) |
| 31 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 32 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 33 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 34 | eqid | |- ( -g ` H ) = ( -g ` H ) |
|
| 35 | 31 32 33 34 | grpsubfval | |- ( -g ` H ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 36 | 27 30 35 | 3eqtr4g | |- ( ph -> ( -g ` G ) = ( -g ` H ) ) |