This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmpropd2.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| nmpropd2.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| nmpropd2.3 | |- ( ph -> K e. Grp ) |
||
| nmpropd2.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| nmpropd2.5 | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
||
| Assertion | nmpropd2 | |- ( ph -> ( norm ` K ) = ( norm ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpropd2.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | nmpropd2.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | nmpropd2.3 | |- ( ph -> K e. Grp ) |
|
| 4 | nmpropd2.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 5 | nmpropd2.5 | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
|
| 6 | 1 2 | eqtr3d | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 7 | 1 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 8 | 7 | reseq2d | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 9 | 5 8 | eqtr3d | |- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 10 | 2 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` L ) X. ( Base ` L ) ) ) |
| 11 | 10 | reseq2d | |- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 12 | 9 11 | eqtr3d | |- ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 13 | eqidd | |- ( ph -> a = a ) |
|
| 14 | 1 2 4 | grpidpropd | |- ( ph -> ( 0g ` K ) = ( 0g ` L ) ) |
| 15 | 12 13 14 | oveq123d | |- ( ph -> ( a ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ( 0g ` K ) ) = ( a ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ( 0g ` L ) ) ) |
| 16 | 6 15 | mpteq12dv | |- ( ph -> ( a e. ( Base ` K ) |-> ( a ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ( 0g ` K ) ) ) = ( a e. ( Base ` L ) |-> ( a ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ( 0g ` L ) ) ) ) |
| 17 | eqid | |- ( norm ` K ) = ( norm ` K ) |
|
| 18 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 19 | eqid | |- ( 0g ` K ) = ( 0g ` K ) |
|
| 20 | eqid | |- ( dist ` K ) = ( dist ` K ) |
|
| 21 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 22 | 17 18 19 20 21 | nmfval2 | |- ( K e. Grp -> ( norm ` K ) = ( a e. ( Base ` K ) |-> ( a ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ( 0g ` K ) ) ) ) |
| 23 | 3 22 | syl | |- ( ph -> ( norm ` K ) = ( a e. ( Base ` K ) |-> ( a ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ( 0g ` K ) ) ) ) |
| 24 | 1 2 4 | grppropd | |- ( ph -> ( K e. Grp <-> L e. Grp ) ) |
| 25 | 3 24 | mpbid | |- ( ph -> L e. Grp ) |
| 26 | eqid | |- ( norm ` L ) = ( norm ` L ) |
|
| 27 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 28 | eqid | |- ( 0g ` L ) = ( 0g ` L ) |
|
| 29 | eqid | |- ( dist ` L ) = ( dist ` L ) |
|
| 30 | eqid | |- ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) |
|
| 31 | 26 27 28 29 30 | nmfval2 | |- ( L e. Grp -> ( norm ` L ) = ( a e. ( Base ` L ) |-> ( a ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ( 0g ` L ) ) ) ) |
| 32 | 25 31 | syl | |- ( ph -> ( norm ` L ) = ( a e. ( Base ` L ) |-> ( a ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ( 0g ` L ) ) ) ) |
| 33 | 16 23 32 | 3eqtr4d | |- ( ph -> ( norm ` K ) = ( norm ` L ) ) |