This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negfi | |- ( ( A C_ RR /\ A e. Fin ) -> { n e. RR | -u n e. A } e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ RR -> ( a e. A -> a e. RR ) ) |
|
| 2 | renegcl | |- ( a e. RR -> -u a e. RR ) |
|
| 3 | 1 2 | syl6 | |- ( A C_ RR -> ( a e. A -> -u a e. RR ) ) |
| 4 | 3 | ralrimiv | |- ( A C_ RR -> A. a e. A -u a e. RR ) |
| 5 | dmmptg | |- ( A. a e. A -u a e. RR -> dom ( a e. A |-> -u a ) = A ) |
|
| 6 | 4 5 | syl | |- ( A C_ RR -> dom ( a e. A |-> -u a ) = A ) |
| 7 | 6 | eqcomd | |- ( A C_ RR -> A = dom ( a e. A |-> -u a ) ) |
| 8 | 7 | eleq1d | |- ( A C_ RR -> ( A e. Fin <-> dom ( a e. A |-> -u a ) e. Fin ) ) |
| 9 | funmpt | |- Fun ( a e. A |-> -u a ) |
|
| 10 | fundmfibi | |- ( Fun ( a e. A |-> -u a ) -> ( ( a e. A |-> -u a ) e. Fin <-> dom ( a e. A |-> -u a ) e. Fin ) ) |
|
| 11 | 9 10 | mp1i | |- ( A C_ RR -> ( ( a e. A |-> -u a ) e. Fin <-> dom ( a e. A |-> -u a ) e. Fin ) ) |
| 12 | 8 11 | bitr4d | |- ( A C_ RR -> ( A e. Fin <-> ( a e. A |-> -u a ) e. Fin ) ) |
| 13 | reex | |- RR e. _V |
|
| 14 | 13 | ssex | |- ( A C_ RR -> A e. _V ) |
| 15 | 14 | mptexd | |- ( A C_ RR -> ( a e. A |-> -u a ) e. _V ) |
| 16 | eqid | |- ( a e. A |-> -u a ) = ( a e. A |-> -u a ) |
|
| 17 | 16 | negf1o | |- ( A C_ RR -> ( a e. A |-> -u a ) : A -1-1-onto-> { x e. RR | -u x e. A } ) |
| 18 | f1of1 | |- ( ( a e. A |-> -u a ) : A -1-1-onto-> { x e. RR | -u x e. A } -> ( a e. A |-> -u a ) : A -1-1-> { x e. RR | -u x e. A } ) |
|
| 19 | 17 18 | syl | |- ( A C_ RR -> ( a e. A |-> -u a ) : A -1-1-> { x e. RR | -u x e. A } ) |
| 20 | f1vrnfibi | |- ( ( ( a e. A |-> -u a ) e. _V /\ ( a e. A |-> -u a ) : A -1-1-> { x e. RR | -u x e. A } ) -> ( ( a e. A |-> -u a ) e. Fin <-> ran ( a e. A |-> -u a ) e. Fin ) ) |
|
| 21 | 15 19 20 | syl2anc | |- ( A C_ RR -> ( ( a e. A |-> -u a ) e. Fin <-> ran ( a e. A |-> -u a ) e. Fin ) ) |
| 22 | 1 | imp | |- ( ( A C_ RR /\ a e. A ) -> a e. RR ) |
| 23 | 2 | adantl | |- ( ( ( A C_ RR /\ a e. A ) /\ a e. RR ) -> -u a e. RR ) |
| 24 | recn | |- ( a e. RR -> a e. CC ) |
|
| 25 | 24 | negnegd | |- ( a e. RR -> -u -u a = a ) |
| 26 | 25 | eqcomd | |- ( a e. RR -> a = -u -u a ) |
| 27 | 26 | eleq1d | |- ( a e. RR -> ( a e. A <-> -u -u a e. A ) ) |
| 28 | 27 | biimpcd | |- ( a e. A -> ( a e. RR -> -u -u a e. A ) ) |
| 29 | 28 | adantl | |- ( ( A C_ RR /\ a e. A ) -> ( a e. RR -> -u -u a e. A ) ) |
| 30 | 29 | imp | |- ( ( ( A C_ RR /\ a e. A ) /\ a e. RR ) -> -u -u a e. A ) |
| 31 | 23 30 | jca | |- ( ( ( A C_ RR /\ a e. A ) /\ a e. RR ) -> ( -u a e. RR /\ -u -u a e. A ) ) |
| 32 | 22 31 | mpdan | |- ( ( A C_ RR /\ a e. A ) -> ( -u a e. RR /\ -u -u a e. A ) ) |
| 33 | eleq1 | |- ( n = -u a -> ( n e. RR <-> -u a e. RR ) ) |
|
| 34 | negeq | |- ( n = -u a -> -u n = -u -u a ) |
|
| 35 | 34 | eleq1d | |- ( n = -u a -> ( -u n e. A <-> -u -u a e. A ) ) |
| 36 | 33 35 | anbi12d | |- ( n = -u a -> ( ( n e. RR /\ -u n e. A ) <-> ( -u a e. RR /\ -u -u a e. A ) ) ) |
| 37 | 32 36 | syl5ibrcom | |- ( ( A C_ RR /\ a e. A ) -> ( n = -u a -> ( n e. RR /\ -u n e. A ) ) ) |
| 38 | simprr | |- ( ( A C_ RR /\ ( n e. RR /\ -u n e. A ) ) -> -u n e. A ) |
|
| 39 | recn | |- ( n e. RR -> n e. CC ) |
|
| 40 | negneg | |- ( n e. CC -> -u -u n = n ) |
|
| 41 | 40 | eqcomd | |- ( n e. CC -> n = -u -u n ) |
| 42 | 39 41 | syl | |- ( n e. RR -> n = -u -u n ) |
| 43 | 42 | ad2antrl | |- ( ( A C_ RR /\ ( n e. RR /\ -u n e. A ) ) -> n = -u -u n ) |
| 44 | negeq | |- ( a = -u n -> -u a = -u -u n ) |
|
| 45 | 44 | eqeq2d | |- ( a = -u n -> ( n = -u a <-> n = -u -u n ) ) |
| 46 | 37 38 43 45 | rspceb2dv | |- ( A C_ RR -> ( E. a e. A n = -u a <-> ( n e. RR /\ -u n e. A ) ) ) |
| 47 | 46 | abbidv | |- ( A C_ RR -> { n | E. a e. A n = -u a } = { n | ( n e. RR /\ -u n e. A ) } ) |
| 48 | 16 | rnmpt | |- ran ( a e. A |-> -u a ) = { n | E. a e. A n = -u a } |
| 49 | df-rab | |- { n e. RR | -u n e. A } = { n | ( n e. RR /\ -u n e. A ) } |
|
| 50 | 47 48 49 | 3eqtr4g | |- ( A C_ RR -> ran ( a e. A |-> -u a ) = { n e. RR | -u n e. A } ) |
| 51 | 50 | eleq1d | |- ( A C_ RR -> ( ran ( a e. A |-> -u a ) e. Fin <-> { n e. RR | -u n e. A } e. Fin ) ) |
| 52 | 12 21 51 | 3bitrd | |- ( A C_ RR -> ( A e. Fin <-> { n e. RR | -u n e. A } e. Fin ) ) |
| 53 | 52 | biimpa | |- ( ( A C_ RR /\ A e. Fin ) -> { n e. RR | -u n e. A } e. Fin ) |