This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi . (Contributed by AV, 10-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1vrnfibi | |- ( ( F e. V /\ F : A -1-1-> B ) -> ( F e. Fin <-> ran F e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1dm | |- ( F : A -1-1-> B -> dom F = A ) |
|
| 2 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
| 3 | eleq1 | |- ( A = dom F -> ( A e. _V <-> dom F e. _V ) ) |
|
| 4 | 3 | eqcoms | |- ( dom F = A -> ( A e. _V <-> dom F e. _V ) ) |
| 5 | 2 4 | imbitrrid | |- ( dom F = A -> ( F e. V -> A e. _V ) ) |
| 6 | 1 5 | syl | |- ( F : A -1-1-> B -> ( F e. V -> A e. _V ) ) |
| 7 | 6 | impcom | |- ( ( F e. V /\ F : A -1-1-> B ) -> A e. _V ) |
| 8 | f1dmvrnfibi | |- ( ( A e. _V /\ F : A -1-1-> B ) -> ( F e. Fin <-> ran F e. Fin ) ) |
|
| 9 | 7 8 | sylancom | |- ( ( F e. V /\ F : A -1-1-> B ) -> ( F e. Fin <-> ran F e. Fin ) ) |