This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negf1o.1 | |- F = ( x e. A |-> -u x ) |
|
| Assertion | negf1o | |- ( A C_ RR -> F : A -1-1-onto-> { n e. RR | -u n e. A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negf1o.1 | |- F = ( x e. A |-> -u x ) |
|
| 2 | negeq | |- ( n = -u x -> -u n = -u -u x ) |
|
| 3 | 2 | eleq1d | |- ( n = -u x -> ( -u n e. A <-> -u -u x e. A ) ) |
| 4 | ssel | |- ( A C_ RR -> ( x e. A -> x e. RR ) ) |
|
| 5 | renegcl | |- ( x e. RR -> -u x e. RR ) |
|
| 6 | 4 5 | syl6 | |- ( A C_ RR -> ( x e. A -> -u x e. RR ) ) |
| 7 | 6 | imp | |- ( ( A C_ RR /\ x e. A ) -> -u x e. RR ) |
| 8 | 4 | imp | |- ( ( A C_ RR /\ x e. A ) -> x e. RR ) |
| 9 | recn | |- ( x e. RR -> x e. CC ) |
|
| 10 | negneg | |- ( x e. CC -> -u -u x = x ) |
|
| 11 | 10 | eqcomd | |- ( x e. CC -> x = -u -u x ) |
| 12 | 9 11 | syl | |- ( x e. RR -> x = -u -u x ) |
| 13 | 12 | eleq1d | |- ( x e. RR -> ( x e. A <-> -u -u x e. A ) ) |
| 14 | 13 | biimpcd | |- ( x e. A -> ( x e. RR -> -u -u x e. A ) ) |
| 15 | 14 | adantl | |- ( ( A C_ RR /\ x e. A ) -> ( x e. RR -> -u -u x e. A ) ) |
| 16 | 8 15 | mpd | |- ( ( A C_ RR /\ x e. A ) -> -u -u x e. A ) |
| 17 | 3 7 16 | elrabd | |- ( ( A C_ RR /\ x e. A ) -> -u x e. { n e. RR | -u n e. A } ) |
| 18 | negeq | |- ( n = y -> -u n = -u y ) |
|
| 19 | 18 | eleq1d | |- ( n = y -> ( -u n e. A <-> -u y e. A ) ) |
| 20 | 19 | elrab | |- ( y e. { n e. RR | -u n e. A } <-> ( y e. RR /\ -u y e. A ) ) |
| 21 | simpr | |- ( ( y e. RR /\ -u y e. A ) -> -u y e. A ) |
|
| 22 | 21 | a1i | |- ( A C_ RR -> ( ( y e. RR /\ -u y e. A ) -> -u y e. A ) ) |
| 23 | 20 22 | biimtrid | |- ( A C_ RR -> ( y e. { n e. RR | -u n e. A } -> -u y e. A ) ) |
| 24 | 23 | imp | |- ( ( A C_ RR /\ y e. { n e. RR | -u n e. A } ) -> -u y e. A ) |
| 25 | 4 9 | syl6com | |- ( x e. A -> ( A C_ RR -> x e. CC ) ) |
| 26 | 25 | adantl | |- ( ( ( y e. RR /\ -u y e. A ) /\ x e. A ) -> ( A C_ RR -> x e. CC ) ) |
| 27 | 26 | imp | |- ( ( ( ( y e. RR /\ -u y e. A ) /\ x e. A ) /\ A C_ RR ) -> x e. CC ) |
| 28 | recn | |- ( y e. RR -> y e. CC ) |
|
| 29 | 28 | ad3antrrr | |- ( ( ( ( y e. RR /\ -u y e. A ) /\ x e. A ) /\ A C_ RR ) -> y e. CC ) |
| 30 | negcon2 | |- ( ( x e. CC /\ y e. CC ) -> ( x = -u y <-> y = -u x ) ) |
|
| 31 | 27 29 30 | syl2anc | |- ( ( ( ( y e. RR /\ -u y e. A ) /\ x e. A ) /\ A C_ RR ) -> ( x = -u y <-> y = -u x ) ) |
| 32 | 31 | exp31 | |- ( ( y e. RR /\ -u y e. A ) -> ( x e. A -> ( A C_ RR -> ( x = -u y <-> y = -u x ) ) ) ) |
| 33 | 20 32 | sylbi | |- ( y e. { n e. RR | -u n e. A } -> ( x e. A -> ( A C_ RR -> ( x = -u y <-> y = -u x ) ) ) ) |
| 34 | 33 | impcom | |- ( ( x e. A /\ y e. { n e. RR | -u n e. A } ) -> ( A C_ RR -> ( x = -u y <-> y = -u x ) ) ) |
| 35 | 34 | impcom | |- ( ( A C_ RR /\ ( x e. A /\ y e. { n e. RR | -u n e. A } ) ) -> ( x = -u y <-> y = -u x ) ) |
| 36 | 1 17 24 35 | f1o2d | |- ( A C_ RR -> F : A -1-1-onto-> { n e. RR | -u n e. A } ) |