This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negfi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) | |
| 2 | renegcl | ⊢ ( 𝑎 ∈ ℝ → - 𝑎 ∈ ℝ ) | |
| 3 | 1 2 | syl6 | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 → - 𝑎 ∈ ℝ ) ) |
| 4 | 3 | ralrimiv | ⊢ ( 𝐴 ⊆ ℝ → ∀ 𝑎 ∈ 𝐴 - 𝑎 ∈ ℝ ) |
| 5 | dmmptg | ⊢ ( ∀ 𝑎 ∈ 𝐴 - 𝑎 ∈ ℝ → dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ⊆ ℝ → dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = 𝐴 ) |
| 7 | 6 | eqcomd | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 = dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
| 9 | funmpt | ⊢ Fun ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) | |
| 10 | fundmfibi | ⊢ ( Fun ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) → ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) | |
| 11 | 9 10 | mp1i | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ dom ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
| 12 | 8 11 | bitr4d | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
| 13 | reex | ⊢ ℝ ∈ V | |
| 14 | 13 | ssex | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
| 15 | 14 | mptexd | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ V ) |
| 16 | eqid | ⊢ ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) | |
| 17 | 16 | negf1o | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1-onto→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) |
| 18 | f1of1 | ⊢ ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1-onto→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } → ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) |
| 20 | f1vrnfibi | ⊢ ( ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ V ∧ ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) : 𝐴 –1-1→ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) → ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) | |
| 21 | 15 19 20 | syl2anc | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ) ) |
| 22 | 1 | imp | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 23 | 2 | adantl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 ∈ ℝ ) → - 𝑎 ∈ ℝ ) |
| 24 | recn | ⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ ) | |
| 25 | 24 | negnegd | ⊢ ( 𝑎 ∈ ℝ → - - 𝑎 = 𝑎 ) |
| 26 | 25 | eqcomd | ⊢ ( 𝑎 ∈ ℝ → 𝑎 = - - 𝑎 ) |
| 27 | 26 | eleq1d | ⊢ ( 𝑎 ∈ ℝ → ( 𝑎 ∈ 𝐴 ↔ - - 𝑎 ∈ 𝐴 ) ) |
| 28 | 27 | biimpcd | ⊢ ( 𝑎 ∈ 𝐴 → ( 𝑎 ∈ ℝ → - - 𝑎 ∈ 𝐴 ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ∈ ℝ → - - 𝑎 ∈ 𝐴 ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 ∈ ℝ ) → - - 𝑎 ∈ 𝐴 ) |
| 31 | 23 30 | jca | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 ∈ ℝ ) → ( - 𝑎 ∈ ℝ ∧ - - 𝑎 ∈ 𝐴 ) ) |
| 32 | 22 31 | mpdan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) → ( - 𝑎 ∈ ℝ ∧ - - 𝑎 ∈ 𝐴 ) ) |
| 33 | eleq1 | ⊢ ( 𝑛 = - 𝑎 → ( 𝑛 ∈ ℝ ↔ - 𝑎 ∈ ℝ ) ) | |
| 34 | negeq | ⊢ ( 𝑛 = - 𝑎 → - 𝑛 = - - 𝑎 ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑛 = - 𝑎 → ( - 𝑛 ∈ 𝐴 ↔ - - 𝑎 ∈ 𝐴 ) ) |
| 36 | 33 35 | anbi12d | ⊢ ( 𝑛 = - 𝑎 → ( ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ↔ ( - 𝑎 ∈ ℝ ∧ - - 𝑎 ∈ 𝐴 ) ) ) |
| 37 | 32 36 | syl5ibrcom | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴 ) → ( 𝑛 = - 𝑎 → ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) ) |
| 38 | simprr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) → - 𝑛 ∈ 𝐴 ) | |
| 39 | recn | ⊢ ( 𝑛 ∈ ℝ → 𝑛 ∈ ℂ ) | |
| 40 | negneg | ⊢ ( 𝑛 ∈ ℂ → - - 𝑛 = 𝑛 ) | |
| 41 | 40 | eqcomd | ⊢ ( 𝑛 ∈ ℂ → 𝑛 = - - 𝑛 ) |
| 42 | 39 41 | syl | ⊢ ( 𝑛 ∈ ℝ → 𝑛 = - - 𝑛 ) |
| 43 | 42 | ad2antrl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) → 𝑛 = - - 𝑛 ) |
| 44 | negeq | ⊢ ( 𝑎 = - 𝑛 → - 𝑎 = - - 𝑛 ) | |
| 45 | 44 | eqeq2d | ⊢ ( 𝑎 = - 𝑛 → ( 𝑛 = - 𝑎 ↔ 𝑛 = - - 𝑛 ) ) |
| 46 | 37 38 43 45 | rspceb2dv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 ↔ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) ) ) |
| 47 | 46 | abbidv | ⊢ ( 𝐴 ⊆ ℝ → { 𝑛 ∣ ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 } = { 𝑛 ∣ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) } ) |
| 48 | 16 | rnmpt | ⊢ ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = { 𝑛 ∣ ∃ 𝑎 ∈ 𝐴 𝑛 = - 𝑎 } |
| 49 | df-rab | ⊢ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } = { 𝑛 ∣ ( 𝑛 ∈ ℝ ∧ - 𝑛 ∈ 𝐴 ) } | |
| 50 | 47 48 49 | 3eqtr4g | ⊢ ( 𝐴 ⊆ ℝ → ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) = { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) |
| 51 | 50 | eleq1d | ⊢ ( 𝐴 ⊆ ℝ → ( ran ( 𝑎 ∈ 𝐴 ↦ - 𝑎 ) ∈ Fin ↔ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ∈ Fin ) ) |
| 52 | 12 21 51 | 3bitrd | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∈ Fin ↔ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ∈ Fin ) ) |
| 53 | 52 | biimpa | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ∈ Fin ) |