This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd . (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| Assertion | 2oppchomf | |- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| 2 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 3 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 4 | 2 3 | homffn | |- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 5 | fnrel | |- ( ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) -> Rel ( Homf ` C ) ) |
|
| 6 | 4 5 | ax-mp | |- Rel ( Homf ` C ) |
| 7 | relxp | |- Rel ( ( Base ` C ) X. ( Base ` C ) ) |
|
| 8 | 4 | fndmi | |- dom ( Homf ` C ) = ( ( Base ` C ) X. ( Base ` C ) ) |
| 9 | 8 | releqi | |- ( Rel dom ( Homf ` C ) <-> Rel ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 10 | 7 9 | mpbir | |- Rel dom ( Homf ` C ) |
| 11 | tpostpos2 | |- ( ( Rel ( Homf ` C ) /\ Rel dom ( Homf ` C ) ) -> tpos tpos ( Homf ` C ) = ( Homf ` C ) ) |
|
| 12 | 6 10 11 | mp2an | |- tpos tpos ( Homf ` C ) = ( Homf ` C ) |
| 13 | eqid | |- ( oppCat ` O ) = ( oppCat ` O ) |
|
| 14 | 1 2 | oppchomf | |- tpos ( Homf ` C ) = ( Homf ` O ) |
| 15 | 13 14 | oppchomf | |- tpos tpos ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| 16 | 12 15 | eqtr3i | |- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |