This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| funcoppc2.p | |- P = ( oppCat ` D ) |
||
| funcoppc2.c | |- ( ph -> C e. V ) |
||
| funcoppc2.d | |- ( ph -> D e. W ) |
||
| funcoppc5.f | |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) |
||
| Assertion | funcoppc5 | |- ( ph -> F e. ( C Func D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| 2 | funcoppc2.p | |- P = ( oppCat ` D ) |
|
| 3 | funcoppc2.c | |- ( ph -> C e. V ) |
|
| 4 | funcoppc2.d | |- ( ph -> D e. W ) |
|
| 5 | funcoppc5.f | |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) |
|
| 6 | relfunc | |- Rel ( O Func P ) |
|
| 7 | eqid | |- ( oppFunc ` F ) = ( oppFunc ` F ) |
|
| 8 | 5 6 7 | oppfrcl | |- ( ph -> F e. ( _V X. _V ) ) |
| 9 | 1st2nd2 | |- ( F e. ( _V X. _V ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 10 | 8 9 | syl | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 11 | 10 | fveq2d | |- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 12 | df-ov | |- ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 13 | 11 12 | eqtr4di | |- ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) ) |
| 14 | 13 5 | eqeltrrd | |- ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) ) |
| 15 | 1 2 3 4 14 | funcoppc4 | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 16 | df-br | |- ( ( 1st ` F ) ( C Func D ) ( 2nd ` F ) <-> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( C Func D ) ) |
|
| 17 | 15 16 | sylib | |- ( ph -> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( C Func D ) ) |
| 18 | 10 17 | eqeltrd | |- ( ph -> F e. ( C Func D ) ) |