This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a binomial with factor minus a number divided by a nonzero number. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulsubdivbinom2 | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - D ) / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> A e. CC ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
| 3 | simpl2 | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 4 | simpl | |- ( ( C e. CC /\ C =/= 0 ) -> C e. CC ) |
|
| 5 | 4 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
| 6 | mulbinom2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
|
| 7 | 6 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) ) |
| 8 | 7 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) ) |
| 9 | 2 3 5 8 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) ) |
| 10 | 5 2 | mulcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) |
| 11 | 10 | sqcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) ^ 2 ) e. CC ) |
| 12 | 2cnd | |- ( C e. CC -> 2 e. CC ) |
|
| 13 | id | |- ( C e. CC -> C e. CC ) |
|
| 14 | 12 13 | mulcld | |- ( C e. CC -> ( 2 x. C ) e. CC ) |
| 15 | 14 | adantr | |- ( ( C e. CC /\ C =/= 0 ) -> ( 2 x. C ) e. CC ) |
| 16 | 15 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 2 x. C ) e. CC ) |
| 17 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 18 | 17 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( A x. B ) e. CC ) |
| 19 | 18 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. B ) e. CC ) |
| 20 | 16 19 | mulcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( 2 x. C ) x. ( A x. B ) ) e. CC ) |
| 21 | 11 20 | addcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) e. CC ) |
| 22 | sqcl | |- ( B e. CC -> ( B ^ 2 ) e. CC ) |
|
| 23 | 22 | 3ad2ant2 | |- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( B ^ 2 ) e. CC ) |
| 24 | 23 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( B ^ 2 ) e. CC ) |
| 25 | 21 24 | addcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) e. CC ) |
| 26 | simpl3 | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> D e. CC ) |
|
| 27 | simpr | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C e. CC /\ C =/= 0 ) ) |
|
| 28 | divsubdir | |- ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) e. CC /\ D e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) ) |
|
| 29 | 25 26 27 28 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) ) |
| 30 | divdir | |- ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) e. CC /\ ( B ^ 2 ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) ) |
|
| 31 | 21 24 27 30 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) ) |
| 32 | divdir | |- ( ( ( ( C x. A ) ^ 2 ) e. CC /\ ( ( 2 x. C ) x. ( A x. B ) ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) ) |
|
| 33 | 11 20 27 32 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) ) |
| 34 | sqmul | |- ( ( C e. CC /\ A e. CC ) -> ( ( C x. A ) ^ 2 ) = ( ( C ^ 2 ) x. ( A ^ 2 ) ) ) |
|
| 35 | 4 1 34 | syl2anr | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) ^ 2 ) = ( ( C ^ 2 ) x. ( A ^ 2 ) ) ) |
| 36 | 35 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) / C ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) ) |
| 37 | sqcl | |- ( C e. CC -> ( C ^ 2 ) e. CC ) |
|
| 38 | 37 | adantr | |- ( ( C e. CC /\ C =/= 0 ) -> ( C ^ 2 ) e. CC ) |
| 39 | 38 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C ^ 2 ) e. CC ) |
| 40 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 41 | 40 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( A ^ 2 ) e. CC ) |
| 42 | 41 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A ^ 2 ) e. CC ) |
| 43 | div23 | |- ( ( ( C ^ 2 ) e. CC /\ ( A ^ 2 ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) = ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) ) |
|
| 44 | 39 42 27 43 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) = ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) ) |
| 45 | sqdivid | |- ( ( C e. CC /\ C =/= 0 ) -> ( ( C ^ 2 ) / C ) = C ) |
|
| 46 | 45 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C ^ 2 ) / C ) = C ) |
| 47 | 46 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) = ( C x. ( A ^ 2 ) ) ) |
| 48 | 36 44 47 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) / C ) = ( C x. ( A ^ 2 ) ) ) |
| 49 | div23 | |- ( ( ( 2 x. C ) e. CC /\ ( A x. B ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) ) |
|
| 50 | 16 19 27 49 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) ) |
| 51 | 2cnd | |- ( ( C e. CC /\ C =/= 0 ) -> 2 e. CC ) |
|
| 52 | simpr | |- ( ( C e. CC /\ C =/= 0 ) -> C =/= 0 ) |
|
| 53 | 51 4 52 | divcan4d | |- ( ( C e. CC /\ C =/= 0 ) -> ( ( 2 x. C ) / C ) = 2 ) |
| 54 | 53 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( 2 x. C ) / C ) = 2 ) |
| 55 | 54 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) = ( 2 x. ( A x. B ) ) ) |
| 56 | 50 55 | eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( 2 x. ( A x. B ) ) ) |
| 57 | 48 56 | oveq12d | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) = ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) ) |
| 58 | 33 57 | eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) ) |
| 59 | 58 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |
| 60 | 31 59 | eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |
| 61 | 60 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) = ( ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) - ( D / C ) ) ) |
| 62 | 5 42 | mulcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. ( A ^ 2 ) ) e. CC ) |
| 63 | 2cnd | |- ( ( A e. CC /\ B e. CC ) -> 2 e. CC ) |
|
| 64 | 63 17 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
| 65 | 64 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
| 66 | 65 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 2 x. ( A x. B ) ) e. CC ) |
| 67 | 62 66 | addcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) e. CC ) |
| 68 | 52 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
| 69 | 24 5 68 | divcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B ^ 2 ) / C ) e. CC ) |
| 70 | 26 5 68 | divcld | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( D / C ) e. CC ) |
| 71 | 67 69 70 | addsubassd | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) - ( D / C ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) ) |
| 72 | 29 61 71 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) ) |
| 73 | divsubdir | |- ( ( ( B ^ 2 ) e. CC /\ D e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) - D ) / C ) = ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) |
|
| 74 | 24 26 27 73 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) - D ) / C ) = ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) |
| 75 | 74 | eqcomd | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) / C ) - ( D / C ) ) = ( ( ( B ^ 2 ) - D ) / C ) ) |
| 76 | 75 | oveq2d | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - D ) / C ) ) ) |
| 77 | 9 72 76 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - D ) / C ) ) ) |