This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a binomial with factor. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulbinom2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | |- ( ( C e. CC /\ A e. CC ) -> ( C x. A ) e. CC ) |
|
| 2 | 1 | ancoms | |- ( ( A e. CC /\ C e. CC ) -> ( C x. A ) e. CC ) |
| 3 | 2 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C x. A ) e. CC ) |
| 4 | simp2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 5 | binom2 | |- ( ( ( C x. A ) e. CC /\ B e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( 2 x. ( ( C x. A ) x. B ) ) ) + ( B ^ 2 ) ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( 2 x. ( ( C x. A ) x. B ) ) ) + ( B ^ 2 ) ) ) |
| 7 | mulass | |- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( ( C x. A ) x. B ) = ( C x. ( A x. B ) ) ) |
|
| 8 | 7 | 3coml | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. A ) x. B ) = ( C x. ( A x. B ) ) ) |
| 9 | 8 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( 2 x. ( ( C x. A ) x. B ) ) = ( 2 x. ( C x. ( A x. B ) ) ) ) |
| 10 | 2cnd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> 2 e. CC ) |
|
| 11 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 12 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 13 | 12 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. B ) e. CC ) |
| 14 | 10 11 13 | mulassd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( 2 x. C ) x. ( A x. B ) ) = ( 2 x. ( C x. ( A x. B ) ) ) ) |
| 15 | 9 14 | eqtr4d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( 2 x. ( ( C x. A ) x. B ) ) = ( ( 2 x. C ) x. ( A x. B ) ) ) |
| 16 | 15 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) ^ 2 ) + ( 2 x. ( ( C x. A ) x. B ) ) ) = ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) ) |
| 17 | 16 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( ( C x. A ) ^ 2 ) + ( 2 x. ( ( C x. A ) x. B ) ) ) + ( B ^ 2 ) ) = ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
| 18 | 6 17 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |