This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a binomial with factor divided by a nonzero number. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muldivbinom2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 2 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 3 | 0cnd | |- ( ( A e. CC /\ B e. CC ) -> 0 e. CC ) |
|
| 4 | 1 2 3 | 3jca | |- ( ( A e. CC /\ B e. CC ) -> ( A e. CC /\ B e. CC /\ 0 e. CC ) ) |
| 5 | mulsubdivbinom2 | |- ( ( ( A e. CC /\ B e. CC /\ 0 e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 0 ) / C ) ) ) |
|
| 6 | 4 5 | stoic3 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 0 ) / C ) ) ) |
| 7 | simp3l | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
| 8 | simp1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
|
| 9 | 7 8 | mulcld | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) |
| 10 | simp2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 11 | 9 10 | addcld | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) + B ) e. CC ) |
| 12 | 11 | sqcld | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) + B ) ^ 2 ) e. CC ) |
| 13 | 12 | subid1d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) = ( ( ( C x. A ) + B ) ^ 2 ) ) |
| 14 | 13 | eqcomd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) ) |
| 15 | 14 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) / C ) = ( ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) / C ) ) |
| 16 | sqcl | |- ( B e. CC -> ( B ^ 2 ) e. CC ) |
|
| 17 | 16 | subid1d | |- ( B e. CC -> ( ( B ^ 2 ) - 0 ) = ( B ^ 2 ) ) |
| 18 | 17 | 3ad2ant2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B ^ 2 ) - 0 ) = ( B ^ 2 ) ) |
| 19 | 18 | eqcomd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B ^ 2 ) = ( ( B ^ 2 ) - 0 ) ) |
| 20 | 19 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B ^ 2 ) / C ) = ( ( ( B ^ 2 ) - 0 ) / C ) ) |
| 21 | 20 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 0 ) / C ) ) ) |
| 22 | 6 15 21 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |