This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005) (Proof shortened by SN, 29-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgt1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 < ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 e. RR ) |
|
| 2 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> A e. RR ) |
|
| 3 | remulcl | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
|
| 4 | 3 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> ( A x. B ) e. RR ) |
| 5 | simprl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 < A ) |
|
| 6 | simprr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 < B ) |
|
| 7 | 0red | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 0 e. RR ) |
|
| 8 | 0lt1 | |- 0 < 1 |
|
| 9 | 8 | a1i | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 0 < 1 ) |
| 10 | 7 1 2 9 5 | lttrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 0 < A ) |
| 11 | ltmulgt11 | |- ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( 1 < B <-> A < ( A x. B ) ) ) |
|
| 12 | 11 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ 0 < A ) -> ( 1 < B <-> A < ( A x. B ) ) ) |
| 13 | 10 12 | syldan | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> ( 1 < B <-> A < ( A x. B ) ) ) |
| 14 | 6 13 | mpbid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> A < ( A x. B ) ) |
| 15 | 1 2 4 5 14 | lttrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 < ( A x. B ) ) |