This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg1.b | |- B = ( Base ` G ) |
|
| mulg1.m | |- .x. = ( .g ` G ) |
||
| mulgnnp1.p | |- .+ = ( +g ` G ) |
||
| Assertion | mulgnnp1 | |- ( ( N e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg1.b | |- B = ( Base ` G ) |
|
| 2 | mulg1.m | |- .x. = ( .g ` G ) |
|
| 3 | mulgnnp1.p | |- .+ = ( +g ` G ) |
|
| 4 | simpl | |- ( ( N e. NN /\ X e. B ) -> N e. NN ) |
|
| 5 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 6 | 4 5 | eleqtrdi | |- ( ( N e. NN /\ X e. B ) -> N e. ( ZZ>= ` 1 ) ) |
| 7 | seqp1 | |- ( N e. ( ZZ>= ` 1 ) -> ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ ( ( NN X. { X } ) ` ( N + 1 ) ) ) ) |
|
| 8 | 6 7 | syl | |- ( ( N e. NN /\ X e. B ) -> ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ ( ( NN X. { X } ) ` ( N + 1 ) ) ) ) |
| 9 | id | |- ( X e. B -> X e. B ) |
|
| 10 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 11 | fvconst2g | |- ( ( X e. B /\ ( N + 1 ) e. NN ) -> ( ( NN X. { X } ) ` ( N + 1 ) ) = X ) |
|
| 12 | 9 10 11 | syl2anr | |- ( ( N e. NN /\ X e. B ) -> ( ( NN X. { X } ) ` ( N + 1 ) ) = X ) |
| 13 | 12 | oveq2d | |- ( ( N e. NN /\ X e. B ) -> ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ ( ( NN X. { X } ) ` ( N + 1 ) ) ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ X ) ) |
| 14 | 8 13 | eqtrd | |- ( ( N e. NN /\ X e. B ) -> ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ X ) ) |
| 15 | eqid | |- seq 1 ( .+ , ( NN X. { X } ) ) = seq 1 ( .+ , ( NN X. { X } ) ) |
|
| 16 | 1 3 2 15 | mulgnn | |- ( ( ( N + 1 ) e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) ) |
| 17 | 10 16 | sylan | |- ( ( N e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) ) |
| 18 | 1 3 2 15 | mulgnn | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) ) |
| 19 | 18 | oveq1d | |- ( ( N e. NN /\ X e. B ) -> ( ( N .x. X ) .+ X ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ X ) ) |
| 20 | 14 17 19 | 3eqtr4d | |- ( ( N e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |