This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnnsubcl.b | |- B = ( Base ` G ) |
|
| mulgnnsubcl.t | |- .x. = ( .g ` G ) |
||
| mulgnnsubcl.p | |- .+ = ( +g ` G ) |
||
| mulgnnsubcl.g | |- ( ph -> G e. V ) |
||
| mulgnnsubcl.s | |- ( ph -> S C_ B ) |
||
| mulgnnsubcl.c | |- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
||
| Assertion | mulgnnsubcl | |- ( ( ph /\ N e. NN /\ X e. S ) -> ( N .x. X ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnnsubcl.b | |- B = ( Base ` G ) |
|
| 2 | mulgnnsubcl.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnnsubcl.p | |- .+ = ( +g ` G ) |
|
| 4 | mulgnnsubcl.g | |- ( ph -> G e. V ) |
|
| 5 | mulgnnsubcl.s | |- ( ph -> S C_ B ) |
|
| 6 | mulgnnsubcl.c | |- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
|
| 7 | simp2 | |- ( ( ph /\ N e. NN /\ X e. S ) -> N e. NN ) |
|
| 8 | 5 | 3ad2ant1 | |- ( ( ph /\ N e. NN /\ X e. S ) -> S C_ B ) |
| 9 | simp3 | |- ( ( ph /\ N e. NN /\ X e. S ) -> X e. S ) |
|
| 10 | 8 9 | sseldd | |- ( ( ph /\ N e. NN /\ X e. S ) -> X e. B ) |
| 11 | eqid | |- seq 1 ( .+ , ( NN X. { X } ) ) = seq 1 ( .+ , ( NN X. { X } ) ) |
|
| 12 | 1 3 2 11 | mulgnn | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) ) |
| 13 | 7 10 12 | syl2anc | |- ( ( ph /\ N e. NN /\ X e. S ) -> ( N .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) ) |
| 14 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 15 | 7 14 | eleqtrdi | |- ( ( ph /\ N e. NN /\ X e. S ) -> N e. ( ZZ>= ` 1 ) ) |
| 16 | elfznn | |- ( x e. ( 1 ... N ) -> x e. NN ) |
|
| 17 | fvconst2g | |- ( ( X e. S /\ x e. NN ) -> ( ( NN X. { X } ) ` x ) = X ) |
|
| 18 | 9 16 17 | syl2an | |- ( ( ( ph /\ N e. NN /\ X e. S ) /\ x e. ( 1 ... N ) ) -> ( ( NN X. { X } ) ` x ) = X ) |
| 19 | simpl3 | |- ( ( ( ph /\ N e. NN /\ X e. S ) /\ x e. ( 1 ... N ) ) -> X e. S ) |
|
| 20 | 18 19 | eqeltrd | |- ( ( ( ph /\ N e. NN /\ X e. S ) /\ x e. ( 1 ... N ) ) -> ( ( NN X. { X } ) ` x ) e. S ) |
| 21 | 6 | 3expb | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 22 | 21 | 3ad2antl1 | |- ( ( ( ph /\ N e. NN /\ X e. S ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 23 | 15 20 22 | seqcl | |- ( ( ph /\ N e. NN /\ X e. S ) -> ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) e. S ) |
| 24 | 13 23 | eqeltrd | |- ( ( ph /\ N e. NN /\ X e. S ) -> ( N .x. X ) e. S ) |