This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnngsum.b | |- B = ( Base ` G ) |
|
| mulgnngsum.t | |- .x. = ( .g ` G ) |
||
| mulgnngsum.f | |- F = ( x e. ( 1 ... N ) |-> X ) |
||
| Assertion | mulgnngsum | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnngsum.b | |- B = ( Base ` G ) |
|
| 2 | mulgnngsum.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnngsum.f | |- F = ( x e. ( 1 ... N ) |-> X ) |
|
| 4 | elnnuz | |- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
|
| 5 | 4 | biimpi | |- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
| 6 | 5 | adantr | |- ( ( N e. NN /\ X e. B ) -> N e. ( ZZ>= ` 1 ) ) |
| 7 | 3 | a1i | |- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> F = ( x e. ( 1 ... N ) |-> X ) ) |
| 8 | eqidd | |- ( ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) /\ x = i ) -> X = X ) |
|
| 9 | simpr | |- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) |
|
| 10 | simpr | |- ( ( N e. NN /\ X e. B ) -> X e. B ) |
|
| 11 | 10 | adantr | |- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> X e. B ) |
| 12 | 7 8 9 11 | fvmptd | |- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = X ) |
| 13 | elfznn | |- ( i e. ( 1 ... N ) -> i e. NN ) |
|
| 14 | fvconst2g | |- ( ( X e. B /\ i e. NN ) -> ( ( NN X. { X } ) ` i ) = X ) |
|
| 15 | 10 13 14 | syl2an | |- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( ( NN X. { X } ) ` i ) = X ) |
| 16 | 12 15 | eqtr4d | |- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = ( ( NN X. { X } ) ` i ) ) |
| 17 | 6 16 | seqfveq | |- ( ( N e. NN /\ X e. B ) -> ( seq 1 ( ( +g ` G ) , F ) ` N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 18 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 19 | elfvex | |- ( X e. ( Base ` G ) -> G e. _V ) |
|
| 20 | 19 1 | eleq2s | |- ( X e. B -> G e. _V ) |
| 21 | 20 | adantl | |- ( ( N e. NN /\ X e. B ) -> G e. _V ) |
| 22 | 10 | adantr | |- ( ( ( N e. NN /\ X e. B ) /\ x e. ( 1 ... N ) ) -> X e. B ) |
| 23 | 22 3 | fmptd | |- ( ( N e. NN /\ X e. B ) -> F : ( 1 ... N ) --> B ) |
| 24 | 1 18 21 6 23 | gsumval2 | |- ( ( N e. NN /\ X e. B ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , F ) ` N ) ) |
| 25 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
|
| 26 | 1 18 2 25 | mulgnn | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 27 | 17 24 26 | 3eqtr4rd | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |