This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg1.b | |- B = ( Base ` G ) |
|
| mulg1.m | |- .x. = ( .g ` G ) |
||
| mulgnnp1.p | |- .+ = ( +g ` G ) |
||
| Assertion | mulg2 | |- ( X e. B -> ( 2 .x. X ) = ( X .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg1.b | |- B = ( Base ` G ) |
|
| 2 | mulg1.m | |- .x. = ( .g ` G ) |
|
| 3 | mulgnnp1.p | |- .+ = ( +g ` G ) |
|
| 4 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 5 | 4 | oveq1i | |- ( 2 .x. X ) = ( ( 1 + 1 ) .x. X ) |
| 6 | 1nn | |- 1 e. NN |
|
| 7 | 1 2 3 | mulgnnp1 | |- ( ( 1 e. NN /\ X e. B ) -> ( ( 1 + 1 ) .x. X ) = ( ( 1 .x. X ) .+ X ) ) |
| 8 | 6 7 | mpan | |- ( X e. B -> ( ( 1 + 1 ) .x. X ) = ( ( 1 .x. X ) .+ X ) ) |
| 9 | 5 8 | eqtrid | |- ( X e. B -> ( 2 .x. X ) = ( ( 1 .x. X ) .+ X ) ) |
| 10 | 1 2 | mulg1 | |- ( X e. B -> ( 1 .x. X ) = X ) |
| 11 | 10 | oveq1d | |- ( X e. B -> ( ( 1 .x. X ) .+ X ) = ( X .+ X ) ) |
| 12 | 9 11 | eqtrd | |- ( X e. B -> ( 2 .x. X ) = ( X .+ X ) ) |