This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mulcxp . (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcxp.1 | ||
| mulcxp.2 | |||
| Assertion | mulcxplem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcxp.1 | ||
| 2 | mulcxp.2 | ||
| 3 | oveq2 | ||
| 4 | 0cn | ||
| 5 | cxp0 | ||
| 6 | 4 5 | ax-mp | |
| 7 | 3 6 | eqtrdi | |
| 8 | oveq2 | ||
| 9 | 8 7 | oveq12d | |
| 10 | 7 9 | eqeq12d | |
| 11 | cxpcl | ||
| 12 | 1 2 11 | syl2anc | |
| 13 | 12 | adantr | |
| 14 | 13 | mul01d | |
| 15 | 0cxp | ||
| 16 | 2 15 | sylan | |
| 17 | 16 | oveq2d | |
| 18 | 14 17 16 | 3eqtr4rd | |
| 19 | cxp0 | ||
| 20 | 1 19 | syl | |
| 21 | 20 | oveq1d | |
| 22 | 1t1e1 | ||
| 23 | 21 22 | eqtr2di | |
| 24 | 10 18 23 | pm2.61ne |