This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of mulc1cncf using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulc1cncfg.1 | |- F/_ x F |
|
| mulc1cncfg.2 | |- F/ x ph |
||
| mulc1cncfg.3 | |- ( ph -> F e. ( A -cn-> CC ) ) |
||
| mulc1cncfg.4 | |- ( ph -> B e. CC ) |
||
| Assertion | mulc1cncfg | |- ( ph -> ( x e. A |-> ( B x. ( F ` x ) ) ) e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulc1cncfg.1 | |- F/_ x F |
|
| 2 | mulc1cncfg.2 | |- F/ x ph |
|
| 3 | mulc1cncfg.3 | |- ( ph -> F e. ( A -cn-> CC ) ) |
|
| 4 | mulc1cncfg.4 | |- ( ph -> B e. CC ) |
|
| 5 | eqid | |- ( x e. CC |-> ( B x. x ) ) = ( x e. CC |-> ( B x. x ) ) |
|
| 6 | 5 | mulc1cncf | |- ( B e. CC -> ( x e. CC |-> ( B x. x ) ) e. ( CC -cn-> CC ) ) |
| 7 | 4 6 | syl | |- ( ph -> ( x e. CC |-> ( B x. x ) ) e. ( CC -cn-> CC ) ) |
| 8 | cncff | |- ( ( x e. CC |-> ( B x. x ) ) e. ( CC -cn-> CC ) -> ( x e. CC |-> ( B x. x ) ) : CC --> CC ) |
|
| 9 | 7 8 | syl | |- ( ph -> ( x e. CC |-> ( B x. x ) ) : CC --> CC ) |
| 10 | cncff | |- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
|
| 11 | 3 10 | syl | |- ( ph -> F : A --> CC ) |
| 12 | fcompt | |- ( ( ( x e. CC |-> ( B x. x ) ) : CC --> CC /\ F : A --> CC ) -> ( ( x e. CC |-> ( B x. x ) ) o. F ) = ( t e. A |-> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ph -> ( ( x e. CC |-> ( B x. x ) ) o. F ) = ( t e. A |-> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) ) ) |
| 14 | 11 | ffvelcdmda | |- ( ( ph /\ t e. A ) -> ( F ` t ) e. CC ) |
| 15 | 4 | adantr | |- ( ( ph /\ t e. A ) -> B e. CC ) |
| 16 | 15 14 | mulcld | |- ( ( ph /\ t e. A ) -> ( B x. ( F ` t ) ) e. CC ) |
| 17 | nfcv | |- F/_ x t |
|
| 18 | 1 17 | nffv | |- F/_ x ( F ` t ) |
| 19 | nfcv | |- F/_ x B |
|
| 20 | nfcv | |- F/_ x x. |
|
| 21 | 19 20 18 | nfov | |- F/_ x ( B x. ( F ` t ) ) |
| 22 | oveq2 | |- ( x = ( F ` t ) -> ( B x. x ) = ( B x. ( F ` t ) ) ) |
|
| 23 | 18 21 22 5 | fvmptf | |- ( ( ( F ` t ) e. CC /\ ( B x. ( F ` t ) ) e. CC ) -> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) = ( B x. ( F ` t ) ) ) |
| 24 | 14 16 23 | syl2anc | |- ( ( ph /\ t e. A ) -> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) = ( B x. ( F ` t ) ) ) |
| 25 | 24 | mpteq2dva | |- ( ph -> ( t e. A |-> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) ) = ( t e. A |-> ( B x. ( F ` t ) ) ) ) |
| 26 | nfcv | |- F/_ t B |
|
| 27 | nfcv | |- F/_ t x. |
|
| 28 | nfcv | |- F/_ t ( F ` x ) |
|
| 29 | 26 27 28 | nfov | |- F/_ t ( B x. ( F ` x ) ) |
| 30 | fveq2 | |- ( t = x -> ( F ` t ) = ( F ` x ) ) |
|
| 31 | 30 | oveq2d | |- ( t = x -> ( B x. ( F ` t ) ) = ( B x. ( F ` x ) ) ) |
| 32 | 21 29 31 | cbvmpt | |- ( t e. A |-> ( B x. ( F ` t ) ) ) = ( x e. A |-> ( B x. ( F ` x ) ) ) |
| 33 | 25 32 | eqtrdi | |- ( ph -> ( t e. A |-> ( ( x e. CC |-> ( B x. x ) ) ` ( F ` t ) ) ) = ( x e. A |-> ( B x. ( F ` x ) ) ) ) |
| 34 | 13 33 | eqtrd | |- ( ph -> ( ( x e. CC |-> ( B x. x ) ) o. F ) = ( x e. A |-> ( B x. ( F ` x ) ) ) ) |
| 35 | 3 7 | cncfco | |- ( ph -> ( ( x e. CC |-> ( B x. x ) ) o. F ) e. ( A -cn-> CC ) ) |
| 36 | 34 35 | eqeltrrd | |- ( ph -> ( x e. A |-> ( B x. ( F ` x ) ) ) e. ( A -cn-> CC ) ) |