This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of mulc1cncf using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulc1cncfg.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| mulc1cncfg.2 | ⊢ Ⅎ 𝑥 𝜑 | ||
| mulc1cncfg.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) | ||
| mulc1cncfg.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | mulc1cncfg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulc1cncfg.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | mulc1cncfg.2 | ⊢ Ⅎ 𝑥 𝜑 | |
| 3 | mulc1cncfg.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 4 | mulc1cncfg.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) | |
| 6 | 5 | mulc1cncf | ⊢ ( 𝐵 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 8 | cncff | ⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) → ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) : ℂ ⟶ ℂ ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) : ℂ ⟶ ℂ ) |
| 10 | cncff | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 12 | fcompt | ⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) : ℂ ⟶ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 14 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 15 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 16 | 15 14 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 17 | nfcv | ⊢ Ⅎ 𝑥 𝑡 | |
| 18 | 1 17 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑡 ) |
| 19 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 20 | nfcv | ⊢ Ⅎ 𝑥 · | |
| 21 | 19 20 18 | nfov | ⊢ Ⅎ 𝑥 ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑡 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) ) | |
| 23 | 18 21 22 5 | fvmptf | ⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℂ ∧ ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) = ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) ) |
| 24 | 14 16 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) = ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) ) |
| 25 | 24 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 26 | nfcv | ⊢ Ⅎ 𝑡 𝐵 | |
| 27 | nfcv | ⊢ Ⅎ 𝑡 · | |
| 28 | nfcv | ⊢ Ⅎ 𝑡 ( 𝐹 ‘ 𝑥 ) | |
| 29 | 26 27 28 | nfov | ⊢ Ⅎ 𝑡 ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) |
| 30 | fveq2 | ⊢ ( 𝑡 = 𝑥 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 31 | 30 | oveq2d | ⊢ ( 𝑡 = 𝑥 → ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) = ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 | 21 29 31 | cbvmpt | ⊢ ( 𝑡 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 | 25 32 | eqtrdi | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 34 | 13 33 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 | 3 7 | cncfco | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝐵 · 𝑥 ) ) ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 36 | 34 35 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |