This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | submre | |- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( C i^i ~P A ) e. ( Moore ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 | |- ( C i^i ~P A ) C_ ~P A |
|
| 2 | 1 | a1i | |- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( C i^i ~P A ) C_ ~P A ) |
| 3 | simpr | |- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. C ) |
|
| 4 | pwidg | |- ( A e. C -> A e. ~P A ) |
|
| 5 | 4 | adantl | |- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. ~P A ) |
| 6 | 3 5 | elind | |- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. ( C i^i ~P A ) ) |
| 7 | simp1l | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> C e. ( Moore ` X ) ) |
|
| 8 | inss1 | |- ( C i^i ~P A ) C_ C |
|
| 9 | sstr | |- ( ( x C_ ( C i^i ~P A ) /\ ( C i^i ~P A ) C_ C ) -> x C_ C ) |
|
| 10 | 8 9 | mpan2 | |- ( x C_ ( C i^i ~P A ) -> x C_ C ) |
| 11 | 10 | 3ad2ant2 | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x C_ C ) |
| 12 | simp3 | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x =/= (/) ) |
|
| 13 | mreintcl | |- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
|
| 14 | 7 11 12 13 | syl3anc | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. C ) |
| 15 | sstr | |- ( ( x C_ ( C i^i ~P A ) /\ ( C i^i ~P A ) C_ ~P A ) -> x C_ ~P A ) |
|
| 16 | 1 15 | mpan2 | |- ( x C_ ( C i^i ~P A ) -> x C_ ~P A ) |
| 17 | 16 | 3ad2ant2 | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x C_ ~P A ) |
| 18 | intssuni2 | |- ( ( x C_ ~P A /\ x =/= (/) ) -> |^| x C_ U. ~P A ) |
|
| 19 | 17 12 18 | syl2anc | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x C_ U. ~P A ) |
| 20 | unipw | |- U. ~P A = A |
|
| 21 | 19 20 | sseqtrdi | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x C_ A ) |
| 22 | elpw2g | |- ( A e. C -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
|
| 23 | 22 | adantl | |- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
| 25 | 21 24 | mpbird | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. ~P A ) |
| 26 | 14 25 | elind | |- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. ( C i^i ~P A ) ) |
| 27 | 2 6 26 | ismred | |- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( C i^i ~P A ) e. ( Moore ` A ) ) |