This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function H mapping polynomials p to their coefficient given a bag of variables F is a group homomorphism. (Contributed by SN, 15-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmapghm.p | |- P = ( I mPoly R ) |
|
| mplmapghm.b | |- B = ( Base ` P ) |
||
| mplmapghm.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplmapghm.h | |- H = ( p e. B |-> ( p ` F ) ) |
||
| mplmapghm.i | |- ( ph -> I e. V ) |
||
| mplmapghm.r | |- ( ph -> R e. Grp ) |
||
| mplmapghm.f | |- ( ph -> F e. D ) |
||
| Assertion | mplmapghm | |- ( ph -> H e. ( P GrpHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmapghm.p | |- P = ( I mPoly R ) |
|
| 2 | mplmapghm.b | |- B = ( Base ` P ) |
|
| 3 | mplmapghm.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 4 | mplmapghm.h | |- H = ( p e. B |-> ( p ` F ) ) |
|
| 5 | mplmapghm.i | |- ( ph -> I e. V ) |
|
| 6 | mplmapghm.r | |- ( ph -> R e. Grp ) |
|
| 7 | mplmapghm.f | |- ( ph -> F e. D ) |
|
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 10 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 11 | 1 | mplgrp | |- ( ( I e. V /\ R e. Grp ) -> P e. Grp ) |
| 12 | 5 6 11 | syl2anc | |- ( ph -> P e. Grp ) |
| 13 | simpr | |- ( ( ph /\ p e. B ) -> p e. B ) |
|
| 14 | 1 8 2 3 13 | mplelf | |- ( ( ph /\ p e. B ) -> p : D --> ( Base ` R ) ) |
| 15 | 7 | adantr | |- ( ( ph /\ p e. B ) -> F e. D ) |
| 16 | 14 15 | ffvelcdmd | |- ( ( ph /\ p e. B ) -> ( p ` F ) e. ( Base ` R ) ) |
| 17 | 16 4 | fmptd | |- ( ph -> H : B --> ( Base ` R ) ) |
| 18 | simprl | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> q e. B ) |
|
| 19 | simprr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> r e. B ) |
|
| 20 | 1 2 10 9 18 19 | mpladd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ( +g ` P ) r ) = ( q oF ( +g ` R ) r ) ) |
| 21 | 20 | fveq1d | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( +g ` P ) r ) ` F ) = ( ( q oF ( +g ` R ) r ) ` F ) ) |
| 22 | 1 8 2 3 18 | mplelf | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> q : D --> ( Base ` R ) ) |
| 23 | 22 | ffnd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> q Fn D ) |
| 24 | 1 8 2 3 19 | mplelf | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> r : D --> ( Base ` R ) ) |
| 25 | 24 | ffnd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> r Fn D ) |
| 26 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 27 | 3 26 | rabex2 | |- D e. _V |
| 28 | 27 | a1i | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> D e. _V ) |
| 29 | inidm | |- ( D i^i D ) = D |
|
| 30 | eqidd | |- ( ( ( ph /\ ( q e. B /\ r e. B ) ) /\ F e. D ) -> ( q ` F ) = ( q ` F ) ) |
|
| 31 | eqidd | |- ( ( ( ph /\ ( q e. B /\ r e. B ) ) /\ F e. D ) -> ( r ` F ) = ( r ` F ) ) |
|
| 32 | 23 25 28 28 29 30 31 | ofval | |- ( ( ( ph /\ ( q e. B /\ r e. B ) ) /\ F e. D ) -> ( ( q oF ( +g ` R ) r ) ` F ) = ( ( q ` F ) ( +g ` R ) ( r ` F ) ) ) |
| 33 | 7 32 | mpidan | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q oF ( +g ` R ) r ) ` F ) = ( ( q ` F ) ( +g ` R ) ( r ` F ) ) ) |
| 34 | 21 33 | eqtrd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( +g ` P ) r ) ` F ) = ( ( q ` F ) ( +g ` R ) ( r ` F ) ) ) |
| 35 | fveq1 | |- ( p = ( q ( +g ` P ) r ) -> ( p ` F ) = ( ( q ( +g ` P ) r ) ` F ) ) |
|
| 36 | 12 | adantr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> P e. Grp ) |
| 37 | 2 9 36 18 19 | grpcld | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ( +g ` P ) r ) e. B ) |
| 38 | fvexd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( +g ` P ) r ) ` F ) e. _V ) |
|
| 39 | 4 35 37 38 | fvmptd3 | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( H ` ( q ( +g ` P ) r ) ) = ( ( q ( +g ` P ) r ) ` F ) ) |
| 40 | fveq1 | |- ( p = q -> ( p ` F ) = ( q ` F ) ) |
|
| 41 | fvexd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ` F ) e. _V ) |
|
| 42 | 4 40 18 41 | fvmptd3 | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( H ` q ) = ( q ` F ) ) |
| 43 | fveq1 | |- ( p = r -> ( p ` F ) = ( r ` F ) ) |
|
| 44 | fvexd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( r ` F ) e. _V ) |
|
| 45 | 4 43 19 44 | fvmptd3 | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( H ` r ) = ( r ` F ) ) |
| 46 | 42 45 | oveq12d | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( H ` q ) ( +g ` R ) ( H ` r ) ) = ( ( q ` F ) ( +g ` R ) ( r ` F ) ) ) |
| 47 | 34 39 46 | 3eqtr4d | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( H ` ( q ( +g ` P ) r ) ) = ( ( H ` q ) ( +g ` R ) ( H ` r ) ) ) |
| 48 | 2 8 9 10 12 6 17 47 | isghmd | |- ( ph -> H e. ( P GrpHom R ) ) |