This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mplgrp.p | |- P = ( I mPoly R ) |
|
| Assertion | mplgrp | |- ( ( I e. V /\ R e. Grp ) -> P e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplgrp.p | |- P = ( I mPoly R ) |
|
| 2 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 3 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 4 | simpl | |- ( ( I e. V /\ R e. Grp ) -> I e. V ) |
|
| 5 | simpr | |- ( ( I e. V /\ R e. Grp ) -> R e. Grp ) |
|
| 6 | 2 1 3 4 5 | mplsubg | |- ( ( I e. V /\ R e. Grp ) -> ( Base ` P ) e. ( SubGrp ` ( I mPwSer R ) ) ) |
| 7 | 1 2 3 | mplval2 | |- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 8 | 7 | subggrp | |- ( ( Base ` P ) e. ( SubGrp ` ( I mPwSer R ) ) -> P e. Grp ) |
| 9 | 6 8 | syl | |- ( ( I e. V /\ R e. Grp ) -> P e. Grp ) |