This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl0.q | |- Q = ( I eval R ) |
|
| evl0.b | |- B = ( Base ` R ) |
||
| evl0.w | |- W = ( I mPoly R ) |
||
| evl0.o | |- O = ( 0g ` R ) |
||
| evl0.0 | |- .0. = ( 0g ` W ) |
||
| evl0.i | |- ( ph -> I e. V ) |
||
| evl0.r | |- ( ph -> R e. CRing ) |
||
| Assertion | evl0 | |- ( ph -> ( Q ` .0. ) = ( ( B ^m I ) X. { O } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl0.q | |- Q = ( I eval R ) |
|
| 2 | evl0.b | |- B = ( Base ` R ) |
|
| 3 | evl0.w | |- W = ( I mPoly R ) |
|
| 4 | evl0.o | |- O = ( 0g ` R ) |
|
| 5 | evl0.0 | |- .0. = ( 0g ` W ) |
|
| 6 | evl0.i | |- ( ph -> I e. V ) |
|
| 7 | evl0.r | |- ( ph -> R e. CRing ) |
|
| 8 | eqid | |- ( algSc ` W ) = ( algSc ` W ) |
|
| 9 | 7 | crngringd | |- ( ph -> R e. Ring ) |
| 10 | 3 8 4 5 6 9 | mplascl0 | |- ( ph -> ( ( algSc ` W ) ` O ) = .0. ) |
| 11 | 10 | fveq2d | |- ( ph -> ( Q ` ( ( algSc ` W ) ` O ) ) = ( Q ` .0. ) ) |
| 12 | 2 4 | ring0cl | |- ( R e. Ring -> O e. B ) |
| 13 | 9 12 | syl | |- ( ph -> O e. B ) |
| 14 | 1 3 2 8 6 7 13 | evlsca | |- ( ph -> ( Q ` ( ( algSc ` W ) ` O ) ) = ( ( B ^m I ) X. { O } ) ) |
| 15 | 11 14 | eqtr3d | |- ( ph -> ( Q ` .0. ) = ( ( B ^m I ) X. { O } ) ) |